老杨说运维 | 历时180天,跟复旦大学共研的运维大模型终于来了!

2023-11-01 21:01

本文主要是介绍老杨说运维 | 历时180天,跟复旦大学共研的运维大模型终于来了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

Q1:到处都在说的AI大模型到底是什么? ? ?

A1:AI大模型是“人工智能预训练大模型"的简称,它包含了"预训练“和”大模型“两层含义,二者结合产生了一种新的人工智能模式即模型在大规模数据集上完成了预训练后无需或仅需要少量数据的微调,就能直接支撑各类应用。

AI大模型具备通用、可规模化复制等诸多优势,是实现AGI(通用人工智能) 的重要方向。

Q2:当前的AI大模型包含了哪些内容?

A2:当前AI大模型包含自然语言处理(NLP)、计算机视觉 (CV),多模态大模型等。

例如,ChatGPT就是自然语言处理领域突破性的创新,懂“人话”,说“人话”。超越了以往的自然语言处理模型,可以应对各种自然语言处理任务,包括机器翻译、问答、文本生成等。

简单来看,我们可以将大模型看作一个巨大的知识库,里面存储了大量的信息和知识,可以帮助计算机更好地理解和处理输入的数据。大模型中的每个神经元和参数,共同构成了一个强大的网络,可以对输入的数据,进行高效的处理和转换。

一、大模型与AIOps结合

伴随2023第六届双态IT乌镇用户大会的圆满完成,擎创科技“一体化数智管理和大模型应用”主题研讨会也正式落下了帷幕。

云原生转型正成为很多行业未来发展战略,伴随国家对信创数字化要求的深入推进,面对敏稳共存这一近年出现的新难题,企业IT运维的建设升级迎来了更为综合性的挑战。

大模型与AIOps结合究竟有什么能力?如何能更好的在实际中进行应用?——复旦大学计算机学院教授 & 擎创科技首席数据家 王鹏与您分享大模型在智能运维中的实践探索经验。

复旦大学计算机学院教授 & 擎创科技首席数据家 王鹏

二、大语言模型与运维相关的能力

经过近一年的不断探索,我们认为目前的大语言模型能够通过六点来有效帮助智能运维提升相关能力。未来若能够更好地将二者融合,或许将实现真正的运维数智化。

这些能力包括:

  • 自然语言处理能力

  • 运维领域知识

  • 持续学习和改进能力

  • 推理能力

  • 自然语言生成能力

  • 代码能力

三、运维大模型的原则

大模型的能力虽然看似很强,但实际上如果想要在智能运维的私域范围内得到很好地应用仍有很多困难。诸如:缺乏特定的告警知识、无法深入分析告警之间的关联性、问答过程有长度限制、模型回答不稳定等。

想要更好地使二者结合,我们认为要保证以下四点原则:

1.本地化部署

本地化部署能够保证私域数据安全,同时利用开源大模型对私域大模型进行训练和微调

2.集成现有工具

使LLM与现有的算法、工具、知识库链接,形成一体化管控;

3.不能为了LLM而LLM

以优先提升运维效率为主,尽量补足现有运维方法的不足,解决现有运维过程中的痛点;

4.充分发挥LLM的长处

即语言生成能力、对话能力和一定的推理能力。

四、擎智运维大模型

在本次双态乌镇大会上,擎创正式发布了自己的运维大模型产品——擎智运维大模型

该模型通过对开源大模型的参数进行微调,结合私域数据构建企业的运维知识库,再通过检索增强等方式,丰富大模型的运维知识,结合大模型的语言生成能力,使得大模型能更好地理解日志/告警/事件等。

1.擎智大模型能力

  • 在日志、告警解析时不再需要设置固定参数并能快速解析单条日志

  • 提升日志、告警的可读性并自动生成处理方案

  • 为日志、告警、事件等提供灵活的多类型数据探查能力

  • 在面对告警风暴时快速准确地数据探查和根因定位

  • 自动化、智能化地自动生成故障报告,有效辅助历史复盘

  • 其他更多

举例:基于知识增强的告警理解

为了应对多样的运维需求,基于各类公域与私域的运维知识库大模型的检索增强是一种符合运维实际的方法。

(后续实践内容在此不加叙述,请点击视频进行了解~)

运维大模型实践分享


擎创科技,Gartner连续推荐的AIOps领域标杆供应商。公司专注于通过提升企业客户对运维数据的洞见能力,为运维降本增效,充分体现科技运维对业务运营的影响力。

行业龙头客户的共同选择

了解更多运维干货与行业前沿动态

可以右上角一键关注

我们是深耕智能运维领域近十年的

连续多年获Gartner推荐的AIOps标杆供应商

下期我们不见不散~

这篇关于老杨说运维 | 历时180天,跟复旦大学共研的运维大模型终于来了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/325731

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选