Hadoop案例(八)辅助排序和二次排序案例(GroupingComparator)

2023-11-01 17:40

本文主要是介绍Hadoop案例(八)辅助排序和二次排序案例(GroupingComparator),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

辅助排序和二次排序案例(GroupingComparator)

1.需求

有如下订单数据

订单id

商品id

成交金额

0000001

Pdt_01

222.8

0000001

Pdt_05

25.8

0000002

Pdt_03

522.8

0000002

Pdt_04

122.4

0000002

Pdt_05

722.4

0000003

Pdt_01

222.8

0000003

Pdt_02

33.8

现在需要求出每一个订单中最贵的商品。

2.数据准备

GroupingComparator.txt

   Pdt_01    222.8Pdt_05    722.4Pdt_05    25.8Pdt_01    222.8Pdt_01    33.8Pdt_03    522.8Pdt_04    122.4

输出数据预期:

3    222.8
part-r-00000.txt
2    722.4
part-r-00001.txt
1    222.8
part-r-00002.txt

3.分析

(1)利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce。

(2)在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值。

 

4.实现

定义订单信息OrderBean

package com.xyg.mapreduce.order;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;public class OrderBean implements WritableComparable<OrderBean> {private int order_id; // 订单id号private double price; // 价格public OrderBean() {super();}public OrderBean(int order_id, double price) {super();this.order_id = order_id;this.price = price;}@Overridepublic void write(DataOutput out) throws IOException {out.writeInt(order_id);out.writeDouble(price);}@Overridepublic void readFields(DataInput in) throws IOException {order_id = in.readInt();price = in.readDouble();}@Overridepublic String toString() {return order_id + "\t" + price;}public int getOrder_id() {return order_id;}public void setOrder_id(int order_id) {this.order_id = order_id;}public double getPrice() {return price;}public void setPrice(double price) {this.price = price;}// 二次排序
    @Overridepublic int compareTo(OrderBean o) {int result = order_id > o.getOrder_id() ? 1 : -1;if (order_id > o.getOrder_id()) {result = 1;} else if (order_id < o.getOrder_id()) {result = -1;} else {// 价格倒序排序result = price > o.getPrice() ? -1 : 1;}return result;}
}

编写OrderSortMapper处理流程

package com.xyg.mapreduce.order;
import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper;public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {OrderBean k = new OrderBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取一行String line = value.toString();// 2 截取String[] fields = line.split("\t"); // 3 封装对象 k.setOrder_id(Integer.parseInt(fields[0])); k.setPrice(Double.parseDouble(fields[2])); // 4 写出 context.write(k, NullWritable.get()); } }

编写OrderSortReducer处理流程

package com.xyg.mapreduce.order;
import java.io.IOException; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Reducer;public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {@Overrideprotected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get());} }

编写OrderSortDriver处理流程

package com.xyg.mapreduce.order;import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class OrderDriver {public static void main(String[] args) throws Exception, IOException {// 1 获取配置信息Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 设置jar包加载路径job.setJarByClass(OrderDriver.class);// 3 加载map/reduce类job.setMapperClass(OrderMapper.class);job.setReducerClass(OrderReducer.class);// 4 设置map输出数据key和value类型job.setMapOutputKeyClass(OrderBean.class);job.setMapOutputValueClass(NullWritable.class);// 5 设置最终输出数据的key和value类型job.setOutputKeyClass(OrderBean.class);job.setOutputValueClass(NullWritable.class);// 6 设置输入数据和输出数据路径FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 10 设置reduce端的分组job.setGroupingComparatorClass(OrderGroupingComparator.class);// 7 设置分区job.setPartitionerClass(OrderPartitioner.class);// 8 设置reduce个数job.setNumReduceTasks(3);// 9 提交boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}OrderSortDriver

编写OrderSortPartitioner处理流程

package com.xyg.mapreduce.order;
import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Partitioner;public class OrderPartitioner extends Partitioner<OrderBean, NullWritable> {@Overridepublic int getPartition(OrderBean key, NullWritable value, int numReduceTasks) { return (key.getOrder_id() & Integer.MAX_VALUE) % numReduceTasks;} }

编写OrderSortGroupingComparator处理流程

package com.xyg.mapreduce.order;
import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator;public class OrderGroupingComparator extends WritableComparator {protected OrderGroupingComparator() {super(OrderBean.class, true);}@SuppressWarnings("rawtypes")@Overridepublic int compare(WritableComparable a, WritableComparable b) { OrderBean aBean = (OrderBean) a; OrderBean bBean = (OrderBean) b; int result; if (aBean.getOrder_id() > bBean.getOrder_id()) { result = 1; } else if (aBean.getOrder_id() < bBean.getOrder_id()) { result = -1; } else { result = 0; } return result; } }

转载于:https://www.cnblogs.com/frankdeng/p/9256249.html

这篇关于Hadoop案例(八)辅助排序和二次排序案例(GroupingComparator)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/324640

相关文章

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常