Python 算法高级篇:多阶段决策问题与状态转移方程的构建

2023-11-01 10:52

本文主要是介绍Python 算法高级篇:多阶段决策问题与状态转移方程的构建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python 算法高级篇:多阶段决策问题与状态转移方程的构建

  • 引言
  • 1. 多阶段决策问题简介
  • 2. 动态规划基础
  • 3. 状态转移方程
  • 4. 案例:生产计划问题
  • 5. Python 实现
  • 6. 总结

引言

多阶段决策问题是一类在不同决策阶段需要做出一系列决策以实现特定目标的问题。这类问题涵盖了许多实际应用,如项目管理、资源分配、生产计划等。解决多阶段决策问题的一种常见方法是使用动态规划。在本篇博客中,我们将重点讨论多阶段决策问题的基本概念、状态转移方程的构建和 Python 实现。

😃😄 ❤️ ❤️ ❤️

1. 多阶段决策问题简介

多阶段决策问题是指一个决策问题可以被分解为多个决策阶段,并且在每个阶段需要选择一组行动来实现某个特定的目标。每个决策阶段的决策可能会影响后续阶段的状态和选择。

这类问题通常用有向图(有向图中的每个节点代表一个决策阶段)来表示。在每个阶段,决策者必须选择从一个节点到另一个节点的路径,以达到最终的目标。问题的目标通常是最小化或最大化某种指标,如成本、利润、时间等。

2. 动态规划基础

动态规划( Dynamic Programming )是解决多阶段决策问题的一种常见方法。它的核心思想是将问题分解为一系列阶段,然后逐个阶段地解决问题。在每个阶段,通过构建状态转移方程来确定如何选择行动以达到最终目标。

动态规划包括以下基本步骤:

  • 1 . 定义问题的阶段:将问题分解为多个决策阶段。
  • 2 . 定义状态:确定每个阶段可能的状态。状态是问题的关键信息,它描述了问题在每个阶段的特定情况。
  • 3 . 构建状态转移方程:确定问题的状态如何在不同阶段之间转移。这是解决问题的核心,通常使用递推公式表示。
  • 4 . 初始条件:确定第一个阶段的状态和可行行动。
  • 5 . 计算顺序:按照问题阶段的递进顺序计算每个阶段的状态值。
  • 6 . 解决问题:根据最终阶段的状态值找到最优解。

3. 状态转移方程

状态转移方程是解决多阶段决策问题的关键。它描述了问题的状态如何在不同阶段之间转移,以及如何根据先前阶段的状态选择行动。

状态转移方程通常以递归的方式定义。例如,如果我们将问题的状态表示为函数 dp(i, j) ,其中 i 是阶段, j 是状态变量,那么状态转移方程可以表示为 dp(i, j) = f(dp(i-1, k)) ,其中 k 表示上一个阶段的状态。这个方程表示,在当前阶段 i 的状态 j 下,我们通过考虑前一个阶段 i-1 的所有可能状态 k 来计算最优值。

状态转移方程的具体形式取决于问题的性质。对于某些问题,状态转移方程可以非常简单,而对于其他问题,它可能相对复杂。

4. 案例:生产计划问题

为了更好理解多阶段决策问题和状态转移方程,让我们考虑一个实际的案例:生产计划问题。假设你是一家工厂的生产经理,你需要决定在未来几个季度内生产多少产品以最大化利润。每个季度的生产数量会受到市场需求、生产成本等因素的影响。

问题的状态和决策可以定义如下:

  • 阶段:每个季度是一个阶段。
  • 状态:每个阶段的状态是当前的季度。
  • 决策:每个季度你需要决定生产的数量。

状态转移方程可以表示为:在第 i 季度,生产 j 个产品的利润等于当前季度的销售收入减去生产成本和存储成本。这可以用一个递推公式表示为 dp(i, j) = revenue(i, j) - cost(i, j) + dp(i+1, k) ,其中 revenue(i, j) 表示在第 i 季度销售 j 个产品所获得的收入, cost(i, j) 表示在第 i 季度生产 j 个产品的成本, k 是下一季度的状态。

5. Python 实现

下面是使用 Python 实现多阶段决策问题的动态规划方法的示例代码。我们将继续以生产计划问题为例。

def production_plan(quarters, max_production):# 定义状态转移表dp = [[0] * (max_production + 1) for _ in range(quarters)]# 从最后一个季度开始逆向计算for i in range(quarters - 1, -1, -1):for j in range(max_production + 1):max_profit = 0for k in range(j + 1):# 计算每种生产数量下的利润profit = revenue(i, k) - cost(i, k) + dp[i + 1][j - k]max_profit = max(max_profit, profit)dp[i][j] = max_profitreturn dp[0][max_production]# 定义销售收入和成本函数
def revenue(quarter, production):# 根据实际情况定义销售收入函数passdef cost(quarter, production):# 根据实际情况定义成本函数pass

这段代码中, dp[i][j] 表示在第 i 季度生产 j 个产品所能获得的最大利润。通过填充状态转移表,我们可以找到最优的生产计划。

6. 总结

多阶段决策问题是一类涵盖众多实际应用的优化问题。动态规划是解决这类问题的有力工具,其中状态转移方程是核心。通过将问题分解为多个决策阶段,定义状态和构建状态转移方程,我们可以有效地解决这些问题。

希望这篇博客对多阶段决策问题以及如何使用动态规划方法解决这类问题有所帮助。

[ 专栏推荐 ]
😃 Python 算法初阶:入门篇》😄
❤️【简介】:本课程是针对 Python 初学者设计的算法基础入门课程,涵盖算法概念、时间复杂度、空间复杂度等基础知识。通过实例演示线性搜索、二分搜索等算法,并介绍哈希表、深度优先搜索、广度优先搜索等搜索算法。此课程将为学员提供扎实的 Python 编程基础与算法入门,为解决实际问题打下坚实基础。
在这里插入图片描述

这篇关于Python 算法高级篇:多阶段决策问题与状态转移方程的构建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322458

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal