数字IC前端学习笔记:优化的基4布斯编码华莱士树乘法器

本文主要是介绍数字IC前端学习笔记:优化的基4布斯编码华莱士树乘法器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关阅读

数字IC前端icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/category_12173698.html


 

        本文是对前文设计的乘法器,即基4布斯编码华莱士树乘法器的补充和优化,具体关于基4布斯编码和华莱士树的内容可以从以往的文章中获得。

数字IC前端学习笔记:数字乘法器的优化设计(基4布斯编码华莱士树乘法器)icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/article/details/134145641
数字IC前端学习笔记:数字乘法器的优化设计(Wallace Tree乘法器)icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/article/details/133611299

        前文提到的基4布斯编码华莱士树乘法器的一部分的电路面积是由补位逻辑所带来的——为了保证求和正确,所有的部分积都会需要被符号拓展至乘积结果的位宽以保证在最差情况下都不会溢出。这对于位宽较大的乘法器而言是一笔不小的面积开销,如表1的八位数相乘产生的部分积左侧的S就是因为要补位至十六位所引入的。 

表1 补位逻辑

S

S

S

S

S

S

S

S

X

X

X

X

X

X

X

X

S

S

S

S

S

S

X

X

X

X

X

X

X

X

S

S

S

S

X

X

X

X

X

X

X

X

S

S

X

X

X

X

X

X

X

X

        可以发现,这种符号拓展要么全是0要么全是1,根据这点特性可以对它进行简化,首先考虑所有部分积都为负的情况,部分积的符号位拓展后的分布如表2所示。

表2 负部分积的累加

1

1

1

1

1

1

1

1

X

X

X

X

X

X

X

X

1

1

1

1

1

1

X

X

X

X

X

X

X

X

1

1

1

1

X

X

X

X

X

X

X

X

1

1

X

X

X

X

X

X

X

X

        如果其中某个部分积为正,那么就需要将符号位都变为0,这只需要在这些拓展的全为1的符号位的最低位再加上1即可表示正确的符号位,即全为0。换句话说,只需要在拓展符号位的最低位加上取反的符号位,如表3所示。将所有的符号位中的1相加,可以得到如表4形式的部分积。 

表3 符号位修正

1

1

1

1

1

1

1

1

X

X

X

X

X

X

X

X

!S

1

1

1

1

1

1

X

X

X

X

X

X

X

X

!S

1

1

1

1

X

X

X

X

X

X

X

X

!S

1

1

X

X

X

X

X

X

X

X

!S

表4 等效补位逻辑 

1

0

0

0

0

0

0

1

!S

X

X

X

X

X

X

X

X

0

0

0

0

1

!S

X

X

X

X

X

X

X

X

0

0

1

!S

X

X

X

X

X

X

X

X

1

!S

X

X

X

X

X

X

X

X

        可以将第一行的1与第一个部分积合并,即合并为!SSS的形式,总结出规律,所有部分积对符号位取反,并在高位补一个1,最后在第一个部分积的符号位加一个1即可完成补位逻辑的优化。注意,这里的部分积(包括符号位)为九位,因为基4布斯编码可能会出现乘2的操作,当编码没有乘2操作时,设计也需要将部分积符号拓展至9位再进行等效的转换。

        具体的Verilog代码实现见附录,Modelsim软件仿真截图如图1所示。使用Synopsis的综合工具Design Compiler综合的结果如图2所示,综合使用了0.13μm工艺库。

图1 优化的基4布斯编码华莱士树乘法器仿真结果

图2 优化的基4布斯编码华莱士树乘法器综合结果

        在Design Compiler中使用report_timing命令,可以得到关键路径的延迟,如图3所示,可以看到,改良后的逻辑延迟相比于改良前有较大的降低,这是由于部分积数量的减少和补位逻辑的简化共同决定的。 

 

图3 优化的基4布斯编码华莱士树乘法器关键路径报告

        在Design Compiler中使用report_area命令,报告所设计电路的面积占用情况,如图4所示,设计使用的面积也低于普通的基4布斯华莱士树编码乘法器器,从RTL代码中也可以看到这一点,上节的乘法器使用了22个全加器和5个半加器,而优化后只使用了14个全加器和8个半加器,使用的资源大大减少。

 

图4 优化的基4布斯编码华莱士树乘法器面积报告

         优化的基4布斯编码华莱士树乘法器的Verilog代码如下所示。

module Booth_Encoder(
input [2:0] Code,
output Neg,Zero,One,Two
);assign Neg = Code[2];assign Zero = (Code == 3'b000) || (Code == 3'b111);assign Two = (Code == 3'b100) || (Code == 3'b011);assign One = (!Zero) & (!Two);endmodulemodule Partial_Generater(
input [7:0] Multiplicand,
input Neg,Zero,One,Two,
output  [9:0] Partial_Product);reg [8:0]Partial_Product_t;always@(*) beginPartial_Product_t=9'b0;if(Zero)Partial_Product_t=9'b0;else if(One)beginif(Neg)	Partial_Product_t=~{Multiplicand[7],Multiplicand}+1'b1;elsePartial_Product_t={Multiplicand[7],Multiplicand};endelse if(Two)beginif(Neg)	Partial_Product_t=~{Multiplicand,1'b0}+1;elsePartial_Product_t={Multiplicand,1'b0};endendassign Partial_Product={1'b1,!Partial_Product_t[8],Partial_Product_t[7:0]};
endmodulemodule Multiplier_Radix_4_Wallace_a(input      [7:0]    A      ,input      [7:0]    B      ,output  [15:0]    Sum
);//A Multiplicand //B Multiplierwire Neg[3:0];wire Zero[3:0];wire One[3:0];wire Two[3:0];wire [9:0]Partial_Product_t;wire [9:0]Partial_Product[3:1];wire [10:0]Partial_Product_0;wire [9:0]Result_0;wire [9:0]Carry_0;wire [10:0]Result_1;wire [10:0]Carry_1;//Booth_EncoderBooth_Encoder Booth_Encoder_0({B[1:0],1'b0},Neg[0],Zero[0],One[0],Two[0]);Booth_Encoder Booth_Encoder_1({B[3:1]},Neg[1],Zero[1],One[1],Two[1]);Booth_Encoder Booth_Encoder_2({B[5:3]},Neg[2],Zero[2],One[2],Two[2]);Booth_Encoder Booth_Encoder_3({B[7:5]},Neg[3],Zero[3],One[3],Two[3]);//Partial_GeneraterPartial_Generater Partial_Generater_0(A,Neg[0],Zero[0],One[0],Two[0],Partial_Product_t);Partial_Generater Partial_Generater_1(A,Neg[1],Zero[1],One[1],Two[1],Partial_Product[1]);Partial_Generater Partial_Generater_2(A,Neg[2],Zero[2],One[2],Two[2],Partial_Product[2]);Partial_Generater Partial_Generater_3(A,Neg[3],Zero[3],One[3],Two[3],Partial_Product[3]);assign Partial_Product_0={Partial_Product_t[8],!Partial_Product_t[8],!Partial_Product_t[8],Partial_Product_t[7:0]};//Wallace_Tree//Stage1assign Sum[0]=Partial_Product_0[0];assign Sum[1]=Partial_Product_0[1];assign Sum[2]=Result_0[0];Adder_half Adder_half_0(Partial_Product_0[2],Partial_Product[1][0],Result_0[0],Carry_0[0]);Adder_half Adder_half_1(Partial_Product_0[3],Partial_Product[1][1],Result_0[1],Carry_0[1]);Adder Adder_0(Partial_Product_0[4],Partial_Product[1][2],Partial_Product[2][0],Result_0[2],Carry_0[2]);Adder Adder_1(Partial_Product_0[5],Partial_Product[1][3],Partial_Product[2][1],Result_0[3],Carry_0[3]);Adder Adder_2(Partial_Product_0[6],Partial_Product[1][4],Partial_Product[2][2],Result_0[4],Carry_0[4]);Adder Adder_3(Partial_Product_0[7],Partial_Product[1][5],Partial_Product[2][3],Result_0[5],Carry_0[5]);Adder Adder_4(Partial_Product_0[8],Partial_Product[1][6],Partial_Product[2][4],Result_0[6],Carry_0[6]);Adder Adder_5(Partial_Product_0[9],Partial_Product[1][7],Partial_Product[2][5],Result_0[7],Carry_0[7]);Adder Adder_6(Partial_Product_0[10],Partial_Product[1][8],Partial_Product[2][6],Result_0[8],Carry_0[8]);Adder_half Adder_half_3(Partial_Product[1][9],Partial_Product[2][7],Result_0[9],Carry_0[9]);//Stage2assign Sum[3]=Result_1[0];Adder_half Adder_half_4(Result_0[1],Carry_0[0],Result_1[0],Carry_1[0]);Adder_half Adder_half_5(Result_0[2],Carry_0[1],Result_1[1],Carry_1[1]);Adder_half Adder_half_6(Result_0[3],Carry_0[2],Result_1[2],Carry_1[2]);Adder Adder_7(Result_0[4],Carry_0[3],Partial_Product[3][0],Result_1[3],Carry_1[3]);Adder Adder_8(Result_0[5],Carry_0[4],Partial_Product[3][1],Result_1[4],Carry_1[4]);Adder Adder_9(Result_0[6],Carry_0[5],Partial_Product[3][2],Result_1[5],Carry_1[5]);Adder Adder_10(Result_0[7],Carry_0[6],Partial_Product[3][3],Result_1[6],Carry_1[6]);Adder Adder_11(Result_0[8],Carry_0[7],Partial_Product[3][4],Result_1[7],Carry_1[7]);Adder Adder_12(Result_0[9],Carry_0[8],Partial_Product[3][5],Result_1[8],Carry_1[8]);Adder Adder_13(Partial_Product[2][8],Carry_0[9],Partial_Product[3][6],Result_1[9],Carry_1[9]);Adder_half Adder_half_7(Partial_Product[2][9],Partial_Product[3][7],Result_1[10],Carry_1[10]);assign Sum[15:4]={1'b0,Partial_Product[3][8],Result_1[10:1]}+{Partial_Product[3][9],Carry_1[10:0]};
endmodule     

这篇关于数字IC前端学习笔记:优化的基4布斯编码华莱士树乘法器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322305

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6