NOIP2023模拟6联测27 无穷括号序列

2023-11-01 02:28

本文主要是介绍NOIP2023模拟6联测27 无穷括号序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目大意

C C C有一个括号序列 A A A,其长度为 m m m,且序列元素只包含左右括号。他想生成一个无限长的括号序列 B B B,由于 B B B的长度为正无穷,所以其下标可以为任意整数(可以为负)。为了由 A A A生成 B B B,小 C C C采用如下方式:

{ b i = a i , 0 ≤ i < n b i = b i − n , i ≥ n b i = b i + n , i < 0 \begin{cases} b_i=a_i,\qquad 0\leq i<n \\ b_i=b_{i-n},\quad \ i\geq n \\ b_i=b_{i+n},\quad \ i<0 \end{cases} bi=ai,0i<nbi=bin, inbi=bi+n, i<0

无聊的小 C C C还打算以序列 B B B为基础生成无穷个长度为正无穷的括号序列,我们定义 B k B^k Bk代表第 k k k个无穷序列, B 0 = B B^0=B B0=B。对于任意 k ≥ 1 k\geq 1 k1,由 B k − 1 B^{k-1} Bk1生成 B k B^k Bk的方式如下:

{ b i k = b i + 1 k − 1 , b i k − 1 = ‘ ( ’ b i k = b i − 1 k − 1 , b i k − 1 = ‘ ) ’ \begin{cases} b_i^k=b_{i+1}^{k-1}, \quad b_i^{k-1}=‘(’ \\ b_i^k=b_{i-1}^{k-1}, \quad b_i^{k-1}=‘)’ \end{cases} {bik=bi+1k1,bik1=(bik=bi1k1,bik1=)

最后,小 C C C q q q次询问,每次询问给定的 k , l , r k,l,r k,l,r,求有多少个左括号存在于无穷括号序列 B k B^k Bk中下标位于 [ l , r ] [l,r] [l,r]的元素中。

T T T组数据。

1 ≤ n , q ≤ 1 0 5 , 0 ≤ k ≤ 1 0 9 , − 1 0 9 ≤ l ≤ r ≤ 1 0 9 , 1 ≤ T ≤ 10 1\leq n,q\leq 10^5,0\leq k\leq 10^9,-10^9\leq l\leq r\leq 10^9,1\leq T\leq 10 1n,q105,0k109,109lr109,1T10

时间限制 3000 m s 3000ms 3000ms,空间限制 512 M B 512MB 512MB


题解

f ( k , i ) f(k,i) f(k,i)表示 B k B^k Bk中第 i i i个左括号的下标( i i i可以为 0 0 0甚至负数),设 g ( k , p ) g(k,p) g(k,p)表示满足 f ( k , i ) ≤ p f(k,i)\leq p f(k,i)p的最大的 i i i,则区间 [ l , r ] [l,r] [l,r]里的左括号的总数为 g ( k , r ) − g ( k , l − 1 ) g(k,r)-g(k,l-1) g(k,r)g(k,l1) g g g的值可以用二分求出。

因为我们只关心 g g g的差值,所以第 0 0 0个左括号的位置对应那个左括号其实是可以任意指定的。方便起见,我们把括号序列 A A A中的第一个左括号设为第 0 0 0个左括号。

下面考虑 f ( k , i ) f(k,i) f(k,i)的转移式:

  • 如果 f ( k − 1 , i ) f(k-1,i) f(k1,i)的下一个字符为右括号,因为 ( ) () ()会变成 ) ( )( )(,所以 f ( k , i ) = f ( k − 1 , i ) + 1 f(k,i)=f(k-1,i)+1 f(k,i)=f(k1,i)+1
  • 如果 f ( k − 1 , i ) f(k-1,i) f(k1,i)的下一个字符为右括号,因为 ( ( (( ((会变成 ( ∗ (* (,所以 f ( k , i ) = f ( k − 1 , i + 1 ) − 1 f(k,i)=f(k-1,i+1)-1 f(k,i)=f(k1,i+1)1

那么,转移式为

f ( k , i ) = min ⁡ { f ( k − 1 , i ) + 1 , f ( k − 1 , i + 1 ) − 1 } f(k,i)=\min\{f(k-1,i)+1,f(k-1,i+1)-1\} f(k,i)=min{f(k1,i)+1,f(k1,i+1)1}

假设 f ( k , i ) f(k,i) f(k,i)是从 f ( 0 , j ) f(0,j) f(0,j)转移过来的,那么第一维从 0 0 0走到 k k k的过程中, min ⁡ \min min中的第二项恰好选了 j − i j-i ji次,第一项恰好选了 k − ( j − i ) k-(j-i) k(ji)次,所以转移式还可以写为

f ( k , i ) = min ⁡ i ≤ j ≤ i + k { f ( 0 , j ) + k − 2 ( j − i ) } f(k,i)=\min\limits_{i\leq j\leq i+k}\{f(0,j)+k-2(j-i)\} f(k,i)=iji+kmin{f(0,j)+k2(ji)}

可以看出决策区间的大小为 k k k。设括号序列 A A A中,左括号的数量为 m m m,我们先分析 k ≤ m k\leq m km时如何求解。

F ( j ) = f ( 0 , j ) − 2 j F(j)=f(0,j)-2j F(j)=f(0,j)2j,注意到 f ( 0 , j + m ) − f ( 0 , j ) = n f(0,j+m)-f(0,j)=n f(0,j+m)f(0,j)=n,则有

F ( j + t ) = F ( j % m + t ) + ( n − 2 m ) × ⌊ j m ⌋ F(j+t)=F(j\% m+t)+(n-2m)\times \lfloor\dfrac jm\rfloor F(j+t)=F(j%m+t)+(n2m)×mj

其中 t t t是任意非负整数。我们可以用 R M Q RMQ RMQ来预处理 F ( 0 ) F(0) F(0) F ( 2 m − 1 ) F(2m-1) F(2m1),然后把 [ i , i + k ] [i,i+k] [i,i+k]映射到 [ i % m , i % m + k ] [i\%m,i\%m+k] [i%m,i%m+k]求最小值即可。

接下来分析一下 k k k比较大的解法。讨论 n − 2 × m n-2\times m n2×m的值:

  • 如果 n − 2 × m ≥ 0 n-2\times m\geq 0 n2×m0,说明 F ( j + m ) ≥ f ( j ) F(j+m)\geq f(j) F(j+m)f(j),因此最小值只存在于 i ≤ j < i + m i\leq j<i+m ij<i+m这个范围中
  • 如果 n − 2 × m < 0 n-2\times m<0 n2×m<0,说明 F ( j + m ) < f ( j ) F(j+m)<f(j) F(j+m)<f(j),因此最小值只存在于 i + k − m < j ≤ i + k i+k-m<j\leq i+k i+km<ji+k这个范围中

这样,我们就把区间长度缩小到了 m m m,通过与上面类似的方法,用 R M Q RMQ RMQ求最小值即可。

时间复杂度为 O ( ∑ ( n log ⁡ n + q log ⁡ v ) ) O(\sum(n\log n+q\log v)) O((nlogn+qlogv)),其中 v v v表示 l , r l,r l,r的值域。

可以参考代码帮助理解。

卡常小技巧

如果你 TLE \text{TLE} TLE的话,可以参考一下下面这些卡常小技巧:

  • 加上快读
  • 在将当前区间映射在 [ 0 , 2 m − 1 ] [0,2m-1] [0,2m1]上时,因为 i i i有可能为负数,所以会需要用 ( i % m + m ) % m (i\%m+m)\%m (i%m+m)%m,这样模了两次,会比较慢,所以当 i < 0 i<0 i<0时我们可以改为 ( i + i n f × m ) % m (i+inf\times m)\%m (i+inf×m)%m,其中 i n f inf inf是一个很大的数,来保证 i + i n f × m ≥ 0 i+inf\times m\geq 0 i+inf×m0;如果 i ≥ 0 i\geq 0 i0,则直接用 i % m i\% m i%m。这样就都只需要模一次了,可以快不少
  • 在求 S T ST ST表的时候,对二维数组要先枚举行再枚举列,参考这篇博客,这样也可以快很多

code

#include<bits/stdc++.h>
#define rg register
using namespace std;
const int N=100000;
const long long inf=1e9;
int T,n,m,q,lg[2*N+5],f[2*N+5],st[2*N+5][20];
char s[N+5];
int rd(){int t=0,fl=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-') fl=-1;ch=getchar();}while(ch>='0'&&ch<='9'){t=t*10+ch-'0';ch=getchar();}return t*fl;
}
void init(){lg[0]=-1;for(rg int i=1;i<=2*N;i++) lg[i]=lg[i/2]+1;
}
void solve(){for(rg int i=0;i<m;i++) f[i+m]=f[i]+n;for(rg int i=0;i<2*m;i++) st[i][0]=f[i]-2*i;for(rg int j=1;j<=17;j++){for(rg int i=0;i+(1<<j)-1<2*m;i++){st[i][j]=min(st[i][j-1],st[i+(1<<j-1)][j-1]);}}
}
int findst(int l,int r){int k=lg[r-l+1];return min(st[l][k],st[r-(1<<k)+1][k]);
}
int sv(int x,int mod){if(x>=0) return x%mod;return (x+inf*mod)%mod;
}
int find(int k,int x){if(k<=m){int md=sv(x,m),tmp=(x-md)/m;return findst(md,md+k)+(n-2*m)*tmp+k+2*x;}else if(n-2*m>=0){int md=sv(x,m),tmp=(x-md)/m;return findst(md,md+m-1)+(n-2*m)*tmp+k+2*x;}else{int md=sv(x+k-m,m),tmp=(x+k-m-md)/m;return findst(md+1,md+m)+(n-2*m)*tmp+k+2*x;}
}
int gt(int k,int x){int l=-inf,r=inf,mid;while(l<=r){mid=l+r>>1;if(find(k,mid)<=x) l=mid+1;else r=mid-1;}return l-1;
}
int main()
{
//	freopen("seq.in","r",stdin);
//	freopen("seq.out","w",stdout);init();T=rd();while(T--){scanf("%s",s);n=strlen(s);m=0;for(rg int i=0;i<n;i++){if(s[i]=='(') f[m++]=i;}q=rd();if(!m){for(rg int i=1,k,l,r;i<=q;i++){k=rd();l=rd();r=rd();printf("0\n");}continue;}solve();for(rg int i=1,k,l,r;i<=q;i++){k=rd();l=rd();r=rd();printf("%d\n",gt(k,r)-gt(k,l-1));}}return 0;
}

这篇关于NOIP2023模拟6联测27 无穷括号序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319828

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

usaco 1.2 Transformations(模拟)

我的做法就是一个一个情况枚举出来 注意计算公式: ( 变换后的矩阵记为C) 顺时针旋转90°:C[i] [j]=A[n-j-1] [i] (旋转180°和270° 可以多转几个九十度来推) 对称:C[i] [n-j-1]=A[i] [j] 代码有点长 。。。 /*ID: who jayLANG: C++TASK: transform*/#include<

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

hdu4431麻将模拟

给13张牌。问增加哪些牌可以胡牌。 胡牌有以下几种情况: 1、一个对子 + 4组 3个相同的牌或者顺子。 2、7个不同的对子。 3、13幺 贪心的思想: 对于某张牌>=3个,先减去3个相同,再组合顺子。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOExcepti

POJ1631最长单调递增子序列

最长单调递增子序列 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.util.StringTokenizer;publ

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr