快到年末了,用Python绘制饼状图对商品库存进行分析

2023-11-01 00:10

本文主要是介绍快到年末了,用Python绘制饼状图对商品库存进行分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

嗨害大家好鸭!我是小熊猫❤

在这里插入图片描述

快到年末了

相信大家都在忙着处理年末数据

刚好有一个是对超市的商品库存进行分析的学员案例

真的非常简单~

现在就来带大家康康思路是怎样的吧~

在这里插入图片描述

知识点

  • 文件读写
  • 基础语法
  • 字符串处理
  • 文件生成
  • 数据构建

效果展示

请添加图片描述

请添加图片描述

代码展示

兄弟们学习python,有时候不知道怎么学,从哪里开始学。

掌握了基本的一些语法或者做了两个案例后,

不知道下一步怎么走,

不知道如何去学习更加高深的知识。

那么对于这些大兄弟们,

我准备了大量的免费视频教程,PDF电子书籍,以及源代码!

直接在文末名片自取即可,还会有大佬解答!

# 导入系统包
import platform
from flask import Flask, render_template
from pyecharts import options as opts
from pyecharts.charts import *
from pyecharts.faker import Fakerweb = Flask(__name__)# 数据构建
x_data = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
y_data = [1186, 1246, 1346, 1086, 1430, 1064]data = [[x_data[i], y_data[i]] for i in range(len(x_data))]def pie_charts() -> Pie():# 实例化对象pie = Pie()# 采用Flask库直接获取颜色pie.add("", data, color=Faker.rand_color())# 全局置标题、标签pie.set_global_opts(title_opts=opts.TitleOpts(title="如何绘制饼状图分析商品分类", subtitle="青灯实战,坚持学习!"),legend_opts=opts.LegendOpts(type_="scroll", orient="vertical", pos_top="20%", pos_left="0%"))return pie# 获取对象
p = pie_charts()
# 绘制图形,生成HTML文件的
p.render('./templates/pie_charts.html')# 添加路由显示图表
@web.route('/')
def index():return render_template('pie_charts.html')if __name__ == "__main__":# 运行项目web.run(debug=False)print("Python 版本", platform.python_version())

是不是非常简单呢?

python在手,天下我有~

我是小熊猫,咱下篇文章再见啦(✿◡‿◡)

请添加图片描述

这篇关于快到年末了,用Python绘制饼状图对商品库存进行分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319096

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者