Vivado使用系列:IP Integrator HDL

2023-10-31 18:30

本文主要是介绍Vivado使用系列:IP Integrator HDL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

测试平台Vivado 2017.2

在Vivado的Block设计里,全IP化逐渐形成了一种新型的设计方案,受Vivado内的IP可配置的GUI界面影响,使用IP要比RTL代码更有良好的用户体验;然而,在Block设计里,并不是只有IP这一种可添加并可配置,RTL也可实现上述功能,只需要在Block内右键Add Module..,会弹出下面界面:

选择我之前写的模块add,点击ok,

这样就添加了一个add的RTL Module到Block Design内了。默认Vivado左边是输入端口,右边是输出端口。

上面是一个很简单的操作,接下来进入正题,讲解如何利用IP Integrator HDL语言使我们的RTL Module在Block内更像一个IP,IP Integrator HDL语言支持Verilog、VHDL,这里只用Verilog进行演示。

先看一下Xilinx提供的IP Integrator HDL的Language Templates:

分析一下结构,得出以下几点结论:

1.每个端口定义都是以(*起始,并以*)结束,并写在端口定义之前;

2.每个端口定义结构满足 X_INTERFACE_INFO = "{存在的接口类型} {接口的名字} 接口内的端口(必须与接口类型定义的端口一致)"

3.除了端口定义,还有Parameter定义,以X_INTERFACE_PARAMETER = "开始,内部采用键值对,即Param = value型结构;

下面是vivado内的原话:

//

// Verilog attributes are used to declare signal interfaces and set parameters on them.

// Due to the language, the attributes need to be placed before a port which is part of the interface.

// When adding one or more parameters for an interface, a single attribute with multiple

// key value pairs should be added to before of the ports that is mapped into the interface.

// Generally, the form of the attributes are:

// (* X_INTERFACE_INFO = "<interface vlnv> <interface_name> <logical_port_name>" *)

// (* X_INTERFACE_PARAMETER = "<parameter_name1> <parameter_value1>, <parameter_name2> <parameter_value2>" *)

// input <portname>;

接下来以一个AXI4_controller模块做例子演示一下。

首先按上述步骤添加一个AXI4_controller模块到Block内:

 

module axi4_controller_top #(parameter DATA_WIDTH = 'h100, parameter ADDR_WIDTH = 'h20, parameter LENGTH_WIDTH = 'h8,parameter ID_WIDTH = 'h2,parameter MASTER_ID = 'h1,parameter CLK_FREQ = 'hc8,parameter BASE_ADDR = 'h000000
)(
//
//Other Port
//input s_axil_aclk0,input s_axil_aresetn0,input [31:0] s_axil_awaddr0,input s_axil_awvalid0,output s_axil_awready0,input [31:0] s_axil_wdata0,input [3:0] s_axil_wstrb0,input s_axil_wvalid0,output s_axil_wready0,output [1:0] s_axil_bresp0,output s_axil_bvalid0,input s_axil_bready0,input [31:0] s_axil_araddr0,input s_axil_arvalid0,output s_axil_arready0,output [31:0] s_axil_rdata0,output [1:0] s_axil_rresp0,output s_axil_rvalid0,input s_axil_rready0,// AXI4_masteroutput m_axi_aclk0,output m_axi_aresetn0,output [AXI4_ID_WIDTH-1:0] m_axi_awid0,output [AXI4_ADDR_WIDTH-1:0] m_axi_awaddr0,output [AXI4_LENGTH_WIDTH-1:0] m_axi_awlen0,output [2:0] m_axi_awsize0,output [1:0] m_axi_awburst0,output [3:0] m_axi_awcache0,output [2:0] m_axi_awprot0,output m_axi_awvalid0,input m_axi_awready0,output [AXI4_DATA_WIDTH-1:0] m_axi_wdata0,output [AXI4_DATA_WIDTH/8-1:0] m_axi_wstrb0,output m_axi_wlast0,output m_axi_wvalid0,input m_axi_wready0,input [AXI4_ID_WIDTH-1:0] m_axi_bid0,input [1:0] m_axi_bresp0,input m_axi_bvalid0,output m_axi_bready0,output [AXI4_ID_WIDTH-1:0] m_axi_arid0,output [AXI4_ADDR_WIDTH-1:0] m_axi_araddr0,output [AXI4_LENGTH_WIDTH-1:0] m_axi_arlen0,output [2:0] m_axi_arsize0,output [1:0] m_axi_arburst0,output [3:0] m_axi_arcache0,output [2:0] m_axi_arprot0,output m_axi_arvalid0,input m_axi_arready0,input [AXI4_ID_WIDTH-1:0] m_axi_rid0,input [AXI4_DATA_WIDTH-1:0] m_axi_rdata0,input [1:0] m_axi_rresp0,input m_axi_rlast0,input m_axi_rvalid0,output m_axi_rready0
);endmodule

看到了Vivado有两条axi总线,一条Master一条Slave,我们现在要做的就是用IP Integretor HDL语言强制将两条AXI总线指定出来,并让它们以总线形式显示。

我添加好的axi_dma_controller的代码:

module axi4_controller_top #(parameter DATA_WIDTH = 'h100,parameter ADDR_WIDTH = 'h20,parameter LENGTH_WIDTH = 'h8,parameter ID_WIDTH = 'h2,parameter MASTER_ID = 'h1,parameter CLK_FREQ = 'hc8,parameter ADDR = 'h109000
)(//Other port// AXI4Lite_slave(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite AWADDR" *)input [31:0] s_axil_awaddr0, // Write address (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite AWVALID" *)input s_axil_awvalid0, // Write address valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite AWREADY" *)output s_axil_awready0, // Write address ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite WDATA" *)input [31:0] s_axil_wdata0, // Write data (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite WSTRB" *)input [3:0] s_axil_wstrb0, // Write strobes (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite WVALID" *)input s_axil_wvalid0, // Write valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite WREADY" *)output s_axil_wready0, // Write ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite BRESP" *)output [1:0] s_axil_bresp0, // Write response (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite BVALID" *)output s_axil_bvalid0, // Write response valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite BREADY" *)input s_axil_bready0, // Write response ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite ARADDR" *)input [31:0] s_axil_araddr0, // Read address (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite ARVALID" *)input s_axil_arvalid0, // Read address valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite ARREADY" *)output s_axil_arready0, // Read address ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite RDATA" *)output [31:0] s_axil_rdata0, // Read data (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite RRESP" *)output [1:0] s_axil_rresp0, // Read response (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite RVALID" *)output s_axil_rvalid0, // Read valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_Lite RREADY" *)input s_axil_rready0, // Read ready (optional)(* X_INTERFACE_PARAMETER = "ASSOCIATED_BUSIF S_AXI_Lite, ASSOCIATED_RESET s_axil_aresetn0, FREQ_HZ 100000000" *)(* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 s_axil_aclk0 CLK" *)input s_axil_aclk0,(* X_INTERFACE_PARAMETER = "POLARITY ACTIVE_LOW" *)(* X_INTERFACE_INFO = "xilinx.com:signal:reset:1.0 s_axil_aresetn0 RST" *) output s_axi_aresetn0,// AXI4_masteroutput [AXI4_ID_WIDTH-1:0] m_axi_awid0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWADDR" *)output [AXI4_ADDR_WIDTH-1:0] m_axi_awaddr0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWLEN" *)output [AXI4_LENGTH_WIDTH-1:0] m_axi_awlen0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWSIZE" *)output [2:0] m_axi_awsize0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWBURST" *)output [1:0] m_axi_awburst0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWCACHE" *)output [3:0] m_axi_awcache0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWPROT" *)output [2:0] m_axi_awprot0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWVALID" *)input m_axil_awvalid0, // Write address valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWREADY" *)output m_axil_awready0, // Write address ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WDATA" *)output [AXI4_DATA_WIDTH-1:0] m_axi_wdata0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WSTRB" *)output [AXI4_DATA_WIDTH/8-1:0] m_axi_wstrb0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WLAST" *)output m_axi_wlast0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WVALID" *)input m_axil_wvalid0, // Write valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WREADY" *)output m_axil_wready0, // Write ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BID" *)input [AXI4_ID_WIDTH-1:0] m_axi_bid0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BRESP" *)output [1:0] m_axil_bresp0, // Write response (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BVALID" *)output m_axil_bvalid0, // Write response valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BREADY" *)input m_axil_bready0, // Write response ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARID" *)output [AXI4_ID_WIDTH-1:0] m_axi_arid0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARADDR" *)output [AXI4_ADDR_WIDTH-1:0] m_axi_araddr0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARLEN" *)output [AXI4_LENGTH_WIDTH-1:0] m_axi_arlen0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARSIZE" *)output [2:0] m_axi_arsize0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARBURST" *)output [1:0] m_axi_arburst0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARCACHE" *)output [3:0] m_axi_arcache0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARPROT" *)output [2:0] m_axi_arprot0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARVALID" *)input m_axil_arvalid0, // Read address valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARREADY" *)output m_axil_arready0, // Read address ready (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RID" *)input [AXI4_ID_WIDTH-1:0] m_axi_rid0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RDATA" *)input [AXI4_DATA_WIDTH-1:0] m_axi_rdata0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RRESP" *)output [1:0] m_axil_rresp0, // Read response (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RLAST" *)input m_axi_rlast0,(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RVALID" *)output m_axil_rvalid0, // Read valid (optional)(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RREADY" *)input m_axil_rready0, // Read ready (optional)(* X_INTERFACE_PARAMETER = "ASSOCIATED_BUSIF M_AXI, ASSOCIATED_RESET m_axi_aresetn0, FREQ_HZ 100000000" *)(* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 m_axil_aclk0 CLK" *)output m_axi_aclk0,(* X_INTERFACE_PARAMETER = "POLARITY ACTIVE_LOW" *)(* X_INTERFACE_INFO = "xilinx.com:signal:reset:1.0 m_axil_aresetn0 RST" *)output m_axi_aresetn0
);endmodule

 

可以看到Slave AXI和Master AXI已经以总线图标显示,并能以总线接口进行连线,这是System Verilog才具有的功能,但是Vivado通过Block将其应用在Verilog和VHDL上了。

有的时候Vivado可以根据RTL Module自动推断出模块内的接口,这时候可以不用,但是自动推断的接口,经常会有莫名其妙的问题。如果系统内没有满足自己需要的接口,可以自定义接口,同样可以被IP Integrator HDL使用。

 

这篇关于Vivado使用系列:IP Integrator HDL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317267

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2