Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理

本文主要是介绍Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理

目录

Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理

一、简单介绍

二、实现原理

三、注意事项

四、效果预览

五、实现步骤

六、关键代码

附录:在 HanLP 中,Term 对象的 nature 字段表示词性


一、简单介绍

Android 开发中的一些基础操作,使用整理,便于后期使用。

本节介绍,在Android中, 使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理。

在 Android 平台上,除了 HanLP,还有其他一些可以用于中文分词处理的算法和工具。以下是一些常见的中文分词算法,以及 HanLP 在分词中的一些优势:

常见的中文分词算法和工具:

  1. ansj_seg: ansj_seg 是一个基于 CRF 和 HMM 模型的中文分词工具,适用于 Java 平台。它支持细粒度和粗粒度的分词,并具有一定的自定义词典和词性标注功能。

  2. jieba: jieba 是一个在 Python 中广泛使用的中文分词库,但也有其 Java 版本。它采用了基于前缀词典的分词方法,并在速度和效果方面表现出色。

  3. lucene-analyzers-smartcn: 这是 Apache Lucene 项目中的一个中文分词器,使用了基于规则的分词算法。它在 Lucene 搜索引擎中被广泛使用。

  4. ictclas4j: ictclas4j 是一个中科院计算所开发的中文分词工具,基于 HMM 模型。它支持自定义词典和词性标注。

HanLP 分词的优势:

  1. 多领域适用性: HanLP 被设计为一个面向多领域的中文自然语言处理工具包,不仅包括分词,还支持词性标注、命名实体识别、依存句法分析等多种任务。

  2. 性能和效果: HanLP 在多个标准数据集上进行了训练和优化,具有较好的分词效果和性能。

  3. 灵活的词典支持: HanLP 支持自定义词典,你可以根据需要添加专业领域的词汇,以提升分词效果。

  4. 开放源代码: HanLP 是开源的,你可以自由使用、修改和分发,有利于定制和集成到你的项目中。

  5. 多语言支持: HanLP 不仅支持中文,还支持其他语言,如英文、日文等,为跨语言处理提供了便利。

  6. 社区活跃: HanLP 拥有活跃的社区和维护团队,有助于解决问题和获取支持。

总之,HanLP 是一个功能丰富且性能优越的中文自然语言处理工具,适用于各种应用场景,特别是在多领域的文本处理任务中表现出色。然而,最终的选择取决于你的具体需求和项目背景。

HanLP 官网:HanLP | 在线演示

HanLP GitHub:GitHub - hankcs/HanLP: 中文分词 词性标注 命名实体识别 依存句法分析 成分句法分析 语义依存分析 语义角色标注 指代消解 风格转换 语义相似度 新词发现 关键词短语提取 自动摘要 文本分类聚类 拼音简繁转换 自然语言处理

二、实现原理

1、使用 StandardTokenizer.segment(text) 传入文本 Text 内容进行分词

2、使用 Term.word; 获取分词内容,Term.nature.toString() 获取分词的属性

三、注意事项

1、中文的词会有对应较为准确的此属性,英文可能没有

四、效果预览

五、实现步骤

1、打开 Android Studio 创建一个空工程,在build.gradle 中引入 HanLP

implementation 'com.hankcs:hanlp:portable-1.7.5' 记得 Sync nNow

 2、创建脚本 ChineseSegmentationExample ,实现分词功能

3、在 主脚本中调用,输入要分词的内容

4、打包在Android 机子上运行,效果如上

六、关键代码

1、ChineseSegmentationExample

package com.xxxx.testchinesesegmentationexample;import com.hankcs.hanlp.seg.common.Term;
import com.hankcs.hanlp.tokenizer.StandardTokenizer;import java.util.List;public class ChineseSegmentationExample {/*** 分词* @param wordsContent 要进行分词的内容*/public static void SegmentWords(String wordsContent) {String text = wordsContent;// 进行分词List<Term> terms = StandardTokenizer.segment(text);// 遍历分词结果,判断词性并打印for (Term term : terms) {String word = term.word;String pos = term.nature.toString();String posInfo = getPosInfo(pos); // 判断词性属性System.out.println("Word: " + word + ", POS: " + pos + ", Attribute: " + posInfo);}}/*** 判断词性属性* @param pos* @return 属性*/static String getPosInfo(String pos) {// 这里你可以根据需要添加更多的判断逻辑来确定词性属性if (pos.equals("n")) {return "名词";} else if (pos.equals("v")) {return "动词";} else if (pos.equals("ns")) {return "地名";}else if (pos.equals("t")) {return "时间";}else {return "其他";}}}

2、MainActivity

ackage com.xxxxx.testchinesesegmentationexample;import androidx.appcompat.app.AppCompatActivity;import android.os.Bundle;public class MainActivity extends AppCompatActivity {@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R.layout.activity_main);ChineseSegmentationExample.SegmentWords("现在几号,几点钟,今天明天后天昨天北京深圳的天气如何。");}
}

附录:在 HanLP 中,Term 对象的 nature 字段表示词性

在 HanLP 中,Term 对象的 nature 字段表示词性(Part of Speech,POS)。HanLP 使用了一套标准的中文词性标注体系,每个词性都有一个唯一的标识符。以下是一些常见的中文词性标注及其含义:

  • 名词类:

    • n:普通名词
    • nr:人名
    • ns:地名
    • nt:机构名
    • nz:其他专名
    • nl:名词性惯用语
    • ng:名词性语素
  • 时间类:

    • t:时间词
  • 动词类:

    • v:动词
    • vd:副动词
    • vn:名动词
    • vshi:动词"是"
    • vyou:动词"有"
  • 形容词类:

    • a:形容词
    • ad:副形词
  • 副词类:

    • d:副词
  • 代词类:

    • r:代词
    • rr:人称代词
    • rz:指示代词
    • rzt:时间指示代词
  • 连词类:

    • c:连词
  • 助词类:

    • u:助词
  • 数词类:

    • m:数词
  • 量词类:

    • q:量词
  • 语气词类:

    • y:语气词
  • 叹词类:

    • e:叹词
  • 拟声词类:

    • o:拟声词
  • 方位词类:

    • f:方位词
  • 状态词类:

    • z:状态词
  • 介词类:

    • p:介词
  • 前缀类:

    • h:前缀
  • 后缀类:

    • k:后缀
  • 标点符号类:

    • w:标点符号

请注意,上述只是一些常见的词性标注及其含义,实际情况可能更复杂。你可以根据需要调查 HanLP 的文档来了解更多词性标注的详细信息。根据这些词性标注,你可以编写代码来判断词的属性(如动词、名词、地名等)并进行相应的处理。

这篇关于Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/316748

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存