基于YOLO-V5的农林害虫智能检测系统【毕业设计】

2023-10-31 15:59

本文主要是介绍基于YOLO-V5的农林害虫智能检测系统【毕业设计】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目完整演示视频:

【毕业设计】基于YOLO-V5的农林害虫智能检测系统演示视频

项目代码结构截图如下:

数据集部分图片展示:

yolov5 训练脚本:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Train a YOLOv5 model on a custom datasetUsage:$ python path/to/train.py --data coco128.yaml --weights best.pt --img 640
"""
# 执行命令例子:python train.py --data mycoco.yaml --cfg my_yolov5s.yaml --weights pretrained/yolov5s.pt --epoch 300 --batch-size 8 --device 0
import argparse
import math
import os
import random
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Pathimport numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, Adam, lr_scheduler
from tqdm import tqdmFILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relativeimport val  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.downloads import attempt_download
from utils.general import (LOGGER, NCOLS, check_dataset, check_file, check_git_status, check_img_size,check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,one_cycle, print_args, print_mutation, strip_optimizer)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve, plot_labels
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_firstLOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))def train(hyp,  # path/to/hyp.yaml or hyp dictionaryopt,device,callbacks):save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, = \Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze# Directoriesw = save_dir / 'weights'  # weights dir(w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dirlast, best = w / 'last.pt', w / 'best.pt'# Hyperparametersif isinstance(hyp, str):with open(hyp, errors='ignore') as f:hyp = yaml.safe_load(f)  # load hyps dictLOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))# Save run settingswith open(save_dir / 'hyp.yaml', 'w') as f:yaml.safe_dump(hyp, f, sort_keys=False)with open(save_dir / 'opt.yaml', 'w') as f:yaml.safe_dump(vars(opt), f, sort_keys=False)data_dict = None# Loggersif RANK in [-1, 0]:loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instanceif loggers.wandb:data_dict = loggers.wandb.data_dictif resume:weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp# Register actionsfor k in methods(loggers):callbacks.register_action(k, callback=getattr(loggers, k))# Configplots = not evolve  # create plotscuda = device.type != 'cpu'init_seeds(1 + RANK)with torch_distributed_zero_first(LOCAL_RANK):data_dict = data_dict or check_dataset(data)  # check if Nonetrain_path, val_path = data_dict['train'], data_dict['val']nc = 1 if single_cls else int(data_dict['nc'])  # number of classesnames = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class namesassert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # checkis_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset# Modelcheck_suffix(weights, '.pt')  # check weightspretrained = weights.endswith('.pt')if pretrained:with torch_distributed_zero_first(LOCAL_RANK):weights = attempt_download(weights)  # download if not found locallyckpt = torch.load(weights, map_location=device)  # load checkpointmodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # createexclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keyscsd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersectmodel.load_state_dict(csd, strict=False)  # loadLOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # reportelse:model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create# Freezefreeze = [f'model.{x}.' for x in range(freeze)]  # layers to freezefor k, v in model.named_parameters():v.requires_grad = True  # train all layersif any(x in k for x in freeze):LOGGER.info(f'freezing {k}')v.requires_grad = False# Image sizegs = max(int(model.stride.max()), 32)  # grid size (max stride)imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple# Batch sizeif RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch sizebatch_size = check_train_batch_size(model, imgsz)# Optimizernbs = 64  # nominal batch sizeaccumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizinghyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decayLOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")g0, g1, g2 = [], [], []  # optimizer parameter groupsfor v in model.modules():if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # biasg2.append(v.bias)if isinstance(v, nn.BatchNorm2d):  # weight (no decay)g0.append(v.weight)elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)g1.append(v.weight)if opt.adam:optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentumelse:optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']})  # add g1 with weight_decayoptimizer.add_param_group({'params': g2})  # add g2 (biases)LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")del g0, g1, g2# Schedulerif opt.linear_lr:lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linearelse:lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)# EMAema = ModelEMA(model) if RANK in [-1, 0] else None# Resumestart_epoch, best_fitness = 0, 0.0if pretrained:# Optimizerif ckpt['optimizer'] is not None:optimizer.load_state_dict(ckpt['optimizer'])best_fitness = ckpt['best_fitness']# EMAif ema and ckpt.get('ema'):ema.ema.load_state_dict(ckpt['ema'].float().state_dict())ema.updates = ckpt['updates']# Epochsstart_epoch = ckpt['epoch'] + 1if resume:assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'if epochs < start_epoch:LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")epochs += ckpt['epoch']  # finetune additional epochsdel ckpt, csd# DP modeif cuda and RANK == -1 and torch.cuda.device_count() > 1:LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n''See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')model = torch.nn.DataParallel(model)# SyncBatchNormif opt.sync_bn and cuda and RANK != -1:model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)LOGGER.info('Using SyncBatchNorm()')# Trainloadertrain_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,workers=workers, image_weights=opt.image_weights, quad=opt.quad,prefix=colorstr('train: '), shuffle=True)mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label classnb = len(train_loader)  # number of batchesassert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'# Process 0if RANK in [-1, 0]:val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,workers=workers, pad=0.5,prefix=colorstr('val: '))[0]if not resume:labels = np.concatenate(dataset.labels, 0)# c = torch.tensor(labels[:, 0])  # classes# cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency# model._initialize_biases(cf.to(device))if plots:plot_labels(labels, names, save_dir)# Anchorsif not opt.noautoanchor:check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)model.half().float()  # pre-reduce anchor precisioncallbacks.run('on_pretrain_routine_end')# DDP modeif cuda and RANK != -1:model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)# Model attributesnl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)hyp['box'] *= 3 / nl  # scale to layershyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layershyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layershyp['label_smoothing'] = opt.label_smoothingmodel.nc = nc  # attach number of classes to modelmodel.hyp = hyp  # attach hyperparameters to modelmodel.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weightsmodel.names = names# Start trainingt0 = time.time()nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)# nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of traininglast_opt_step = -1maps = np.zeros(nc)  # mAP per classresults = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)scheduler.last_epoch = start_epoch - 1  # do not movescaler = amp.GradScaler(enabled=cuda)stopper = EarlyStopping(patience=opt.patience)compute_loss = ComputeLoss(model)  # init loss classLOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'f"Logging results to {colorstr('bold', save_dir)}\n"f'Starting training for {epochs} epochs...')for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------model.train()# Update image weights (optional, single-GPU only)if opt.image_weights:cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weightsiw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weightsdataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx# Update mosaic border (optional)# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)# dataset.mosaic_border = [b - imgsz, -b]  # height, width bordersmloss = torch.zeros(3, device=device)  # mean lossesif RANK != -1:train_loader.sampler.set_epoch(epoch)pbar = enumerate(train_loader)LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))if RANK in [-1, 0]:pbar = tqdm(pbar, total=nb, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress baroptimizer.zero_grad()for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------ni = i + nb * epoch  # number integrated batches (since train start)imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0# Warmupif ni <= nw:xi = [0, nw]  # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])# Multi-scaleif opt.multi_scale:sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # sizesf = sz / max(imgs.shape[2:])  # scale factorif sf != 1:ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)# Forwardwith amp.autocast(enabled=cuda):pred = model(imgs)  # forwardloss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_sizeif RANK != -1:loss *= WORLD_SIZE  # gradient averaged between devices in DDP modeif opt.quad:loss *= 4.# Backwardscaler.scale(loss).backward()# Optimizeif ni - last_opt_step >= accumulate:scaler.step(optimizer)  # optimizer.stepscaler.update()optimizer.zero_grad()if ema:ema.update(model)last_opt_step = ni# Logif RANK in [-1, 0]:mloss = (mloss * i + loss_items) / (i + 1)  # update mean lossesmem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)# end batch ------------------------------------------------------------------------------------------------# Schedulerlr = [x['lr'] for x in optimizer.param_groups]  # for loggersscheduler.step()if RANK in [-1, 0]:# mAPcallbacks.run('on_train_epoch_end', epoch=epoch)ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])final_epoch = (epoch + 1 == epochs) or stopper.possible_stopif not noval or final_epoch:  # Calculate mAPresults, maps, _ = val.run(data_dict,batch_size=batch_size // WORLD_SIZE * 2,imgsz=imgsz,model=ema.ema,single_cls=single_cls,dataloader=val_loader,save_dir=save_dir,plots=False,callbacks=callbacks,compute_loss=compute_loss)# Update best mAPfi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]if fi > best_fitness:best_fitness = filog_vals = list(mloss) + list(results) + lrcallbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)# Save modelif (not nosave) or (final_epoch and not evolve):  # if saveckpt = {'epoch': epoch,'best_fitness': best_fitness,'model': deepcopy(de_parallel(model)).half(),'ema': deepcopy(ema.ema).half(),'updates': ema.updates,'optimizer': optimizer.state_dict(),'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,'date': datetime.now().isoformat()}# Save last, best and deletetorch.save(ckpt, last)if best_fitness == fi:torch.save(ckpt, best)if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):torch.save(ckpt, w / f'epoch{epoch}.pt')del ckptcallbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)# Stop Single-GPUif RANK == -1 and stopper(epoch=epoch, fitness=fi):break# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576# stop = stopper(epoch=epoch, fitness=fi)# if RANK == 0:#    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks# Stop DPP# with torch_distributed_zero_first(RANK):# if stop:#    break  # must break all DDP ranks# end epoch ----------------------------------------------------------------------------------------------------# end training -----------------------------------------------------------------------------------------------------if RANK in [-1, 0]:LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')for f in last, best:if f.exists():strip_optimizer(f)  # strip optimizersif f is best:LOGGER.info(f'\nValidating {f}...')results, _, _ = val.run(data_dict,batch_size=batch_size // WORLD_SIZE * 2,imgsz=imgsz,model=attempt_load(f, device).half(),iou_thres=0.65 if is_coco else 0.60,  # best pycocotools results at 0.65single_cls=single_cls,dataloader=val_loader,save_dir=save_dir,save_json=is_coco,verbose=True,plots=True,callbacks=callbacks,compute_loss=compute_loss)  # val best model with plotsif is_coco:callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)callbacks.run('on_train_end', last, best, plots, epoch, results)LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")torch.cuda.empty_cache()return results# 明天把这些模型都试试效果先,一波波给他训练完毕,找个公开的数据集测试一下。
def parse_opt(known=False):parser = argparse.ArgumentParser()parser.add_argument('--weights', type=str, default=ROOT / 'pretrained/best.pt', help='initial weights path')parser.add_argument('--cfg', type=str, default=ROOT / 'models/yolov5s.yaml', help='model.yaml path')parser.add_argument('--data', type=str, default=ROOT / 'data/data.yaml', help='dataset.yaml path')parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')parser.add_argument('--epochs', type=int, default=300)parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs, -1 for autobatch')parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')parser.add_argument('--rect', action='store_true', help='rectangular training')parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')parser.add_argument('--noval', action='store_true', help='only validate final epoch')parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')# parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')parser.add_argument('--multi-scale', default=True, help='vary img-size +/- 50%%')parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')parser.add_argument('--workers', type=int, default=0, help='max dataloader workers (per RANK in DDP mode)')parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')parser.add_argument('--name', default='exp', help='save to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--quad', action='store_true', help='quad dataloader')parser.add_argument('--linear-lr', action='store_true', help='linear LR')parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')# Weights & Biases argumentsparser.add_argument('--entity', default=None, help='W&B: Entity')parser.add_argument('--upload_dataset', action='store_true', help='W&B: Upload dataset as artifact table')parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')opt = parser.parse_known_args()[0] if known else parser.parse_args()return optdef main(opt, callbacks=Callbacks()):# Checksif RANK in [-1, 0]:print_args(FILE.stem, opt)check_git_status()check_requirements(exclude=['thop'])# Resumeif opt.resume and not check_wandb_resume(opt) and not opt.evolve:  # resume an interrupted runckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent pathassert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:opt = argparse.Namespace(**yaml.safe_load(f))  # replaceopt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstateLOGGER.info(f'Resuming training from {ckpt}')else:opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checksassert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'if opt.evolve:opt.project = str(ROOT / 'runs/evolve')opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resumeopt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))# DDP modedevice = select_device(opt.device, batch_size=opt.batch_size)if LOCAL_RANK != -1:assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'assert not opt.evolve, '--evolve argument is not compatible with DDP training'torch.cuda.set_device(LOCAL_RANK)device = torch.device('cuda', LOCAL_RANK)dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")# Trainif not opt.evolve:train(opt.hyp, opt, device, callbacks)if WORLD_SIZE > 1 and RANK == 0:LOGGER.info('Destroying process group... ')dist.destroy_process_group()# Evolve hyperparameters (optional)else:# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr'box': (1, 0.02, 0.2),  # box loss gain'cls': (1, 0.2, 4.0),  # cls loss gain'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight'iou_t': (0, 0.1, 0.7),  # IoU training threshold'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)'scale': (1, 0.0, 0.9),  # image scale (+/- gain)'shear': (1, 0.0, 10.0),  # image shear (+/- deg)'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)'mosaic': (1, 0.0, 1.0),  # image mixup (probability)'mixup': (1, 0.0, 1.0),  # image mixup (probability)'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)with open(opt.hyp, errors='ignore') as f:hyp = yaml.safe_load(f)  # load hyps dictif 'anchors' not in hyp:  # anchors commented in hyp.yamlhyp['anchors'] = 3opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch# ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indicesevolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'if opt.bucket:os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}')  # download evolve.csv if existsfor _ in range(opt.evolve):  # generations to evolveif evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate# Select parent(s)parent = 'single'  # parent selection method: 'single' or 'weighted'x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)n = min(5, len(x))  # number of previous results to considerx = x[np.argsort(-fitness(x))][:n]  # top n mutationsw = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)if parent == 'single' or len(x) == 1:# x = x[random.randint(0, n - 1)]  # random selectionx = x[random.choices(range(n), weights=w)[0]]  # weighted selectionelif parent == 'weighted':x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination# Mutatemp, s = 0.8, 0.2  # mutation probability, sigmanpr = np.randomnpr.seed(int(time.time()))g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1ng = len(meta)v = np.ones(ng)while all(v == 1):  # mutate until a change occurs (prevent duplicates)v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)hyp[k] = float(x[i + 7] * v[i])  # mutate# Constrain to limitsfor k, v in meta.items():hyp[k] = max(hyp[k], v[1])  # lower limithyp[k] = min(hyp[k], v[2])  # upper limithyp[k] = round(hyp[k], 5)  # significant digits# Train mutationresults = train(hyp.copy(), opt, device, callbacks)# Write mutation resultsprint_mutation(results, hyp.copy(), save_dir, opt.bucket)# Plot resultsplot_evolve(evolve_csv)LOGGER.info(f'Hyperparameter evolution finished\n'f"Results saved to {colorstr('bold', save_dir)}\n"f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')def run(**kwargs):# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')opt = parse_opt(True)for k, v in kwargs.items():setattr(opt, k, v)main(opt)# python train.py --data mask_data.yaml --cfg mask_yolov5s.yaml --weights pretrained/best.pt --epoch 100 --batch-size 4 --device cpu
# python train.py --data mask_data.yaml --cfg mask_yolov5l.yaml --weights pretrained/yolov5l.pt --epoch 100 --batch-size 4
# python train.py --data mask_data.yaml --cfg mask_yolov5m.yaml --weights pretrained/yolov5m.pt --epoch 100 --batch-size 4
if __name__ == "__main__":opt = parse_opt()main(opt)

这篇关于基于YOLO-V5的农林害虫智能检测系统【毕业设计】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/316498

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

Linux系统中配置静态IP地址的详细步骤

《Linux系统中配置静态IP地址的详细步骤》本文详细介绍了在Linux系统中配置静态IP地址的五个步骤,包括打开终端、编辑网络配置文件、配置IP地址、保存并重启网络服务,这对于系统管理员和新手都极具... 目录步骤一:打开终端步骤二:编辑网络配置文件步骤三:配置静态IP地址步骤四:保存并关闭文件步骤五:重

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav