java实现克鲁斯卡尔算法

2023-10-31 14:40

本文主要是介绍java实现克鲁斯卡尔算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

应用背景

在这里插入图片描述

  1. 某城市新增7个站点(A,B,C,D,E,F,G) ,现在需要修路把7个站点连通
  2. 各个站点的距离用边线表示(权),比如A~B距离12公里
  3. 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

克鲁斯卡尔算法介绍

  1. 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
  2. 基本思想: 按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
  3. 具体做法: 首先构造一个只含n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止
克鲁斯卡尔算法图解说明

以城市公交站问题来图解说明克鲁斯卡尔算法的原理和步骤:
在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
在这里插入图片描述
例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。
在这里插入图片描述

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

在这里插入图片描述
在这里插入图片描述

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一 很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路-举例说明(如图)

在这里插入图片描述
在将<E,F> <C,D> <D,E> 加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F.
(03) E的终点是F。
(04) F的终点是F.
关于终点的说明:

  1. 就是将所有顶点按照从小到大的顺序排列好之后:某个顶点的终点就是"与它连通的最大顶点"。
  2. 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。[ 后面有代码说明]
实现代码
package ShangGuiGu.Kruskal;import javax.swing.text.EditorKit;/*** 克鲁斯卡尔算法*/
public class KruskalCase {private int edgeNum;private char[] vertexs; //顶点数组private int[][] matrix; //邻接矩阵//使用INF代表两个顶点不能连通private static final int INF=Integer.MAX_VALUE;//构造器public KruskalCase(char[] vertexs,int[][] matrix){this.vertexs=vertexs;this.matrix=matrix;//统计边的条数 邻接矩阵右上角for (int i = 0; i < vertexs.length; i++) {for (int j = i+1; j < vertexs.length; j++) {if (this.matrix[i][j]!=INF){this.edgeNum++;}}}}public static void main(String[] args) {char[] vertexs= {'A','B','C', 'D', 'E','F','G'};//克魯斯卡尔算法的邻接矩阵int matrix[][]= {/*A*/  /*B*//*C*/ /*D*/ /*E*/ /*F*//*G*//*A*/ { 0,   12,  INF,  INF,  INF,  16,  14},/*B*/ { 12,  0,   10,   INF,  INF,  7,   INF},/*C*/ { INF, 10,  0,    3,    5,    6,   INF},/*D*/ { INF, INF, 3,    0,    4,    INF, INF},/*E*/ { INF, INF, 5,    4,    0,    2,   8},/*F*/ { 16,  7,   6,    INF,  2,    0,   9},/*G*/ { 14,  INF, INF,  INF,  8,    9,   0}};//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.//创建KruskalCase对象实KruskalCase kruskalCase = new KruskalCase( vertexs, matrix);//输出构建的kruskalCase.kruskal();kruskalCase.kruskal();}public void kruskal(){int index=0;//用于保存"已有最小生成树”中的每个顶点在最小生成树中的终点int[] ends=new int[edgeNum];//存放选取的边集合EData[] rets=new EData[edgeNum];//获取到图中的边EData[] eData=getEdges();//将所有的边按权值进行排序sortEdges(eData);//遍历edges数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入rets,否则不能加入for (int i = 0; i < edgeNum; i++) {//获取到第i条边的第一个顶点(起点)int p1=getPosition(eData[i].start);//获取到第i条边的第2个顶点int p2=getPosition(eData[i].end);//获取pl这个顶点在已有最小生成树中的终点int m=getEnd(ends,p1);//获取p2这个顶点在已有最小生成树中的终点int n=getEnd(ends,p2);//是否构成回路if (m!=n){ends[m]=n; //设置m在"已有最小生成树"中的终点rets[index++]=eData[i];}}//打印最小生成树for (int i = 0; i < index; i++) {System.out.println(rets[i]);}}/***获取下标为i的顶点的终点(),用于后面判断两个顶点的终点是否相同* @param ends 数组 就是记录了各个顶点对应的终点是哪个,ends数组是在遍历过程中,逐步形成* @param i 表示传入的顶点对应的下标* @return 返回的就是下标为i的这个顶点对应的终点的下标*/public int getEnd(int[] ends,int i){while (ends[i]!=0){i=ends[i];}return i;}/*** 获取顶点间所有的边(实例)集合* @return*/public EData[] getEdges(){EData[] edges = new EData[edgeNum];int index = 0; //边的下标for (int i = 0; i < this.vertexs.length; i++) {for (int j = i+1; j < this.vertexs.length; j++) {//找到一条边if (this.matrix[i][j]!=INF){//start=this.vertexs[i]  end=this.vertexs[j] weight=this.matrix[i][j]edges[index++]=new EData(this.vertexs[i],this.vertexs[j],this.matrix[i][j]);}}}return edges;}/*** 对边集合进行排序(按照权值weight) 冒泡排序* @param edges*/public void sortEdges(EData[] edges){for (int i = 0; i < edges.length-1; i++) {for (int j = 0; j < edges.length-i-1; j++) {if (edges[j].weight>edges[j+1].weight){EData tempEdge=edges[j];edges[j]=edges[j+1];edges[j+1]=tempEdge;}}}}/*** 获取顶点对应的下标* @param vertex* @return*/public int getPosition(char vertex){for (int i = 0; i < this.vertexs.length; i++) {if (this.vertexs[i]==vertex){return i;}}return -1;}}//该类实例代表一条边
class EData{char start; //边的一端(顶点)char end;   //边的另一端(另一个顶点)int weight; //距离(权值)public EData(char start,char end,int weight){this.start=start;this.end=end;this.weight=weight;}@Overridepublic String toString() {return "EData[<"+start+","+end+">,"+"weight:"+weight+"]";}
}

这篇关于java实现克鲁斯卡尔算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/316057

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法