java实现克鲁斯卡尔算法

2023-10-31 14:40

本文主要是介绍java实现克鲁斯卡尔算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

应用背景

在这里插入图片描述

  1. 某城市新增7个站点(A,B,C,D,E,F,G) ,现在需要修路把7个站点连通
  2. 各个站点的距离用边线表示(权),比如A~B距离12公里
  3. 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

克鲁斯卡尔算法介绍

  1. 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
  2. 基本思想: 按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
  3. 具体做法: 首先构造一个只含n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止
克鲁斯卡尔算法图解说明

以城市公交站问题来图解说明克鲁斯卡尔算法的原理和步骤:
在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
在这里插入图片描述
例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。
在这里插入图片描述

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

在这里插入图片描述
在这里插入图片描述

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一 很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路-举例说明(如图)

在这里插入图片描述
在将<E,F> <C,D> <D,E> 加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F.
(03) E的终点是F。
(04) F的终点是F.
关于终点的说明:

  1. 就是将所有顶点按照从小到大的顺序排列好之后:某个顶点的终点就是"与它连通的最大顶点"。
  2. 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。[ 后面有代码说明]
实现代码
package ShangGuiGu.Kruskal;import javax.swing.text.EditorKit;/*** 克鲁斯卡尔算法*/
public class KruskalCase {private int edgeNum;private char[] vertexs; //顶点数组private int[][] matrix; //邻接矩阵//使用INF代表两个顶点不能连通private static final int INF=Integer.MAX_VALUE;//构造器public KruskalCase(char[] vertexs,int[][] matrix){this.vertexs=vertexs;this.matrix=matrix;//统计边的条数 邻接矩阵右上角for (int i = 0; i < vertexs.length; i++) {for (int j = i+1; j < vertexs.length; j++) {if (this.matrix[i][j]!=INF){this.edgeNum++;}}}}public static void main(String[] args) {char[] vertexs= {'A','B','C', 'D', 'E','F','G'};//克魯斯卡尔算法的邻接矩阵int matrix[][]= {/*A*/  /*B*//*C*/ /*D*/ /*E*/ /*F*//*G*//*A*/ { 0,   12,  INF,  INF,  INF,  16,  14},/*B*/ { 12,  0,   10,   INF,  INF,  7,   INF},/*C*/ { INF, 10,  0,    3,    5,    6,   INF},/*D*/ { INF, INF, 3,    0,    4,    INF, INF},/*E*/ { INF, INF, 5,    4,    0,    2,   8},/*F*/ { 16,  7,   6,    INF,  2,    0,   9},/*G*/ { 14,  INF, INF,  INF,  8,    9,   0}};//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.//创建KruskalCase对象实KruskalCase kruskalCase = new KruskalCase( vertexs, matrix);//输出构建的kruskalCase.kruskal();kruskalCase.kruskal();}public void kruskal(){int index=0;//用于保存"已有最小生成树”中的每个顶点在最小生成树中的终点int[] ends=new int[edgeNum];//存放选取的边集合EData[] rets=new EData[edgeNum];//获取到图中的边EData[] eData=getEdges();//将所有的边按权值进行排序sortEdges(eData);//遍历edges数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入rets,否则不能加入for (int i = 0; i < edgeNum; i++) {//获取到第i条边的第一个顶点(起点)int p1=getPosition(eData[i].start);//获取到第i条边的第2个顶点int p2=getPosition(eData[i].end);//获取pl这个顶点在已有最小生成树中的终点int m=getEnd(ends,p1);//获取p2这个顶点在已有最小生成树中的终点int n=getEnd(ends,p2);//是否构成回路if (m!=n){ends[m]=n; //设置m在"已有最小生成树"中的终点rets[index++]=eData[i];}}//打印最小生成树for (int i = 0; i < index; i++) {System.out.println(rets[i]);}}/***获取下标为i的顶点的终点(),用于后面判断两个顶点的终点是否相同* @param ends 数组 就是记录了各个顶点对应的终点是哪个,ends数组是在遍历过程中,逐步形成* @param i 表示传入的顶点对应的下标* @return 返回的就是下标为i的这个顶点对应的终点的下标*/public int getEnd(int[] ends,int i){while (ends[i]!=0){i=ends[i];}return i;}/*** 获取顶点间所有的边(实例)集合* @return*/public EData[] getEdges(){EData[] edges = new EData[edgeNum];int index = 0; //边的下标for (int i = 0; i < this.vertexs.length; i++) {for (int j = i+1; j < this.vertexs.length; j++) {//找到一条边if (this.matrix[i][j]!=INF){//start=this.vertexs[i]  end=this.vertexs[j] weight=this.matrix[i][j]edges[index++]=new EData(this.vertexs[i],this.vertexs[j],this.matrix[i][j]);}}}return edges;}/*** 对边集合进行排序(按照权值weight) 冒泡排序* @param edges*/public void sortEdges(EData[] edges){for (int i = 0; i < edges.length-1; i++) {for (int j = 0; j < edges.length-i-1; j++) {if (edges[j].weight>edges[j+1].weight){EData tempEdge=edges[j];edges[j]=edges[j+1];edges[j+1]=tempEdge;}}}}/*** 获取顶点对应的下标* @param vertex* @return*/public int getPosition(char vertex){for (int i = 0; i < this.vertexs.length; i++) {if (this.vertexs[i]==vertex){return i;}}return -1;}}//该类实例代表一条边
class EData{char start; //边的一端(顶点)char end;   //边的另一端(另一个顶点)int weight; //距离(权值)public EData(char start,char end,int weight){this.start=start;this.end=end;this.weight=weight;}@Overridepublic String toString() {return "EData[<"+start+","+end+">,"+"weight:"+weight+"]";}
}

这篇关于java实现克鲁斯卡尔算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/316057

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——