记录一段帮朋友写的代码,使用牛顿-拉夫逊方法解方程

2023-10-31 06:44

本文主要是介绍记录一段帮朋友写的代码,使用牛顿-拉夫逊方法解方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要求

已知公式:
t = G + A B F r + B r 2 2 F + A 2 B + G A F ln ⁡ ( r − A ) + C o n s t t=\frac{G+AB}{F}r+\frac{Br^2}{2F}+\frac{A^2B+GA}{F}\ln (r-A)+Const t=FG+ABr+2FBr2+FA2B+GAln(rA)+Const
其中

  • t 的值为0-1000,每间隔25取一次值
  • A=2.12941E-10
  • B=0.637224706
  • F=1.2652E-08
  • G=4.28646E-06
  • Const=1.90196E-06

求r的值。

解法

要解这样的方程通常需要用到数值方法。对于这样的复杂方程,我们可以使用牛顿-拉夫逊法来求解。
牛顿-拉夫逊方法的基本思想是:从一个初始猜测值开始,使用函数的导数(或切线的斜率)来更新猜测值,逐步逼近函数的真实零点。
首先,我们需要定义方程和它的导数,然后根据初始值逐渐逼近正确的解。

/*使用牛顿-拉夫逊法来求解。
牛顿-拉夫逊方法的基本思想是:从一个初始猜测值开始,使用函数的导数(或切线的斜率)来更新猜测值,逐步逼近函数的真实零点。
首先,定义方程function和它的导数定义了方程和其导数derivative,然后根据初始值逐渐逼近正确的解。
newtonRaphson函数使用牛顿-拉夫逊方法迭代地逼近方程的根,从一个初始猜测值开始。
*/
#include <stdio.h>
#include <math.h>
// 设置阈值,用于决定函数的值何时足够接近于0
// 当函数的值的绝对值小于这个阈值时,可以认为我们找到了方程的一个解
#define TOLERANCE 1e-6
// 设置去迭代的最大次数,防止无限迭代
#define MAX_ITER 1000double A = 2.12941E-10;
double B = 0.637224706;
double F = 1.2652E-08;
double G = 4.28646E-06;
double Const = 1.90196E-06;// 定义函数
double function(double r, double t) {return (G + A * B) * r / F + B * r * r / (2 * F) + (A * A * B + G * A) * log(r - A) / F + Const - t;
}// 定义函数对r的导数
double derivative(double r) {return (G + A * B) / F + B * r / F + (A * A * B + G * A) / (F * (r - A));
}// 使用牛顿-拉夫逊法求解
double newtonRaphson(double t) {double r = 1.0; // 初始的猜测值for (int i = 0; i < MAX_ITER; i++) {double f = function(r, t);  // 函数在当前猜测值处的值double f_prime = derivative(r); // 函数在当前猜测值处的导数值(也就是切线的斜率)// f的绝对值小于阈值,返回r值if (fabs(f) < TOLERANCE)return r;r = r - f / f_prime;    // 牛顿-拉夫逊方法中的关键更新步骤,用于寻找函数的零点或根}// 超过迭代的最大次数,返回r值return r;
}int main() {int i=1;for (double t = 25; t <= 1000; t += 25) {printf("第%d次迭代:",i++);double r = newtonRaphson(t);printf("t = %lf, r = %lf\n", t, r);}return 0;
}

运行结果:
在这里插入图片描述

这里,我随机选择了r = 1.0作为开始迭代的初始值。选择合适的初始猜测值很重要,因为不同的初始值可能会导致不同的收敛结果,或者在某些情况下可能不会收敛。如果r = 1.0不适用于这个方程或特定的t值范围,可能需要根据实际情况调整这个值。

通常,基于对问题的了解和对方程的形状有一定的认识,选择一个合理的初始值是有帮助的。如果不确定最佳的初始猜测值是多少,可以尝试多个值并检查结果的稳定性。

另外,阈值TOLERANCE和最大迭代次数MAX_ITER的值也需要自行根据经验选择。

这篇关于记录一段帮朋友写的代码,使用牛顿-拉夫逊方法解方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/313546

相关文章

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra