凸优化学习笔记17:次梯度下降法

2023-10-31 04:40

本文主要是介绍凸优化学习笔记17:次梯度下降法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于光滑函数,我们可以用梯度下降法,并且证明了取不同的步长,可以得到次线性收敛,如果加上强凸性质,还可以得到线性收敛速度。那如果现在对于不可导的函数,我们就只能沿着次梯度下降,同样会面临步长的选择、方向的选择、收敛性分析等问题。

1. 收敛性分析

次梯度下降的一般形式为
x ( k ) = x ( k − 1 ) − t k g ( k − 1 ) , k = 1 , 2 , … g ∈ ∂ f ( x ( k − 1 ) ) x^{(k)}=x^{(k-1)}-t_{k} g^{(k-1)}, \quad k=1,2, \ldots \quad g\in\partial f(x^{(k-1)}) x(k)=x(k1)tkg(k1),k=1,2,gf(x(k1))
一般有 3 种步长的选择方式:

  1. fix step: t k t_k tk 为常数
  2. fix length: t k ∥ g ( k − 1 ) ∥ 2 = ∥ x ( k ) − x ( k − 1 ) ∥ 2 t_{k}\left\|g^{(k-1)}\right\|_{2}=\left\|x^{(k)}-x^{(k-1)}\right\|_{2} tkg(k1)2=x(k)x(k1)2 为常数
  3. diminishing: t k → 0 , ∑ k = 1 ∞ t k = ∞ t_{k} \rightarrow 0, \sum_{k=1}^{\infty} t_{k}=\infty tk0,k=1tk=

要证明这几种方法的收敛性,需要先引入 Lipschitz continuous 假设,即
∣ f ( x ) − f ( y ) ∣ ≤ G ∥ x − y ∥ 2 ∀ x , y |f(x)-f(y)| \leq G\|x-y\|_{2} \quad \forall x, y f(x)f(y)Gxy2x,y
这等价于 ∥ g ∥ 2 ≤ G \Vert g\Vert_2\le G g2G 对任意 g ∈ ∂ f ( x ) g\in\partial f(x) gf(x) 都成立。

在分析收敛性之前,我们需要引入一个非常重要的式子⬇️!!!在后面的分析中会一直用到:
∥ x + − x ⋆ ∥ 2 2 = ∥ x − t g − x ⋆ ∥ 2 2 = ∥ x − x ⋆ ∥ 2 2 − 2 t g T ( x − x ⋆ ) + t 2 ∥ g ∥ 2 2 ≤ ∥ x − x ⋆ ∥ 2 2 − 2 t ( f ( x ) − f ⋆ ) + t 2 ∥ g ∥ 2 2 \begin{aligned} \left\|x^{+}-x^{\star}\right\|_{2}^{2} &=\left\|x-t g-x^{\star}\right\|_{2}^{2} \\ &=\left\|x-x^{\star}\right\|_{2}^{2}-2 t g^{T}\left(x-x^{\star}\right)+t^{2}\|g\|_{2}^{2} \\ & \leq\left\|x-x^{\star}\right\|_{2}^{2}-2 t\left(f(x)-f^{\star}\right)+t^{2}\|g\|_{2}^{2} \end{aligned} x+x22=xtgx22=xx222tgT(xx)+t2g22xx222t(f(x)f)+t2g22
那么如果定义 f b e s t ( k ) = min ⁡ 0 ≤ i < k f ( x ( i ) ) f_{\mathrm{best}}^{(k)}=\min _{0 \leq i<k} f\left(x^{(i)}\right) fbest(k)=min0i<kf(x(i)),就有
2 ( ∑ i = 1 k t i ) ( f best  ( k ) − f ⋆ ) ≤ ∥ x ( 0 ) − x ⋆ ∥ 2 2 − ∥ x ( k ) − x ⋆ ∥ 2 2 + ∑ i = 1 k t i 2 ∥ g ( i − 1 ) ∥ 2 2 ≤ ∥ x ( 0 ) − x ⋆ ∥ 2 2 + ∑ i = 1 k t i 2 ∥ g ( i − 1 ) ∥ 2 2 \begin{aligned} 2\left(\sum_{i=1}^{k} t_{i}\right)\left(f_{\text {best }}^{(k)}-f^{\star}\right) & \leq\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}+\sum_{i=1}^{k} t_{i}^{2}\left\|g^{(i-1)}\right\|_{2}^{2} \\ & \leq\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}+\sum_{i=1}^{k} t_{i}^{2}\left\|g^{(i-1)}\right\|_{2}^{2} \end{aligned} 2(i=1kti)(fbest (k)f)x(0)x22x(k)x22+i=1kti2g(i1)22x(0)x22+i=1kti2g(i1)22
根据上面的式子,就可以得到对于

Fixed step size t i = t t_i=t ti=t
f best  ( k ) − f ⋆ ≤ ∥ x ( 0 ) − x ⋆ ∥ 2 2 2 k t + G 2 t 2 f_{\text {best }}^{(k)}-f^{\star} \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{2 k t}+\frac{G^{2} t}{2} fbest (k)f2ktx(0)x22+2G2t
Fixed step length t i = s / ∥ g ( i − 1 ) ∥ 2 t_{i}=s /\left\|g^{(i-1)}\right\|_{2} ti=s/g(i1)2
f best  ( k ) − f ⋆ ≤ G ∥ x ( 0 ) − x ⋆ ∥ 2 2 2 k s + G s 2 f_{\text {best }}^{(k)}-f^{\star} \leq \frac{G\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{2 k s}+\frac{G s}{2} fbest (k)f2ksGx(0)x22+2Gs
这两个式子中的第一项都随着 k k k 增大而趋于 0,但第二项却没有办法消掉,也就是与最优解的误差不会趋于 0。并且他们有一个微妙的不同点在于,fixed step size 情况下 G 2 t / 2 ∼ O ( G 2 ) , G s / 2 ∼ O ( G ) G^2t/2\sim O(G^2),Gs/2\sim O(G) G2t/2O(G2),Gs/2O(G) G G G 一般是较大的。

Diminishing step size t k → 0 , ∑ k = 1 ∞ t k = ∞ t_{k} \rightarrow 0, \sum_{k=1}^{\infty} t_{k}=\infty tk0,k=1tk=
f best  ( k ) − f ⋆ ≤ ∥ x ( 0 ) − x ⋆ ∥ 2 2 + G 2 ∑ i = 1 k t i 2 2 ∑ i = 1 k t i f_{\text {best }}^{(k)}-f^{\star} \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}+G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}} fbest (k)f2i=1ktix(0)x22+G2i=1kti2
可以证明, ( ∑ i = 1 k t i 2 ) / ( ∑ i = 1 k t i ) → 0 \left(\sum_{i=1}^{k} t_{i}^{2}\right) /\left(\sum_{i=1}^{k} t_{i}\right) \rightarrow 0 (i=1kti2)/(i=1kti)0,因此 f best  ( k ) f_{\text {best }}^{(k)} fbest (k) 会收敛于 f ⋆ f^\star f

下面看几幅图片,对于优化问题 min ⁡ ∥ A x − b ∥ 1 \min\Vert Ax-b\Vert_1 minAxb1

Fixed step lengthDiminishing step size
fixed-stepdiminishing

前面考虑了固定步长的情况,假设现在我们固定总的迭代次数为 k k k,可不可以优化步长 s s s 的大小来尽可能使 f best ( k ) f_\text{best}^{(k)} fbest(k) 接近 f ⋆ f^\star f 呢?这实际上可以表示为优化问题
f best  ( k ) − f ⋆ ≤ R 2 + ∑ i = 1 k s i 2 2 ∑ i = 1 k s i / G ⟹ min ⁡ s R 2 2 k s / G + s 2 / G f_{\text {best }}^{(k)}-f^{\star} \leq \frac{R^{2}+\sum_{i=1}^{k} s_{i}^{2}}{2 \sum_{i=1}^{k} s_{i}/G} \Longrightarrow \min_s \frac{R^{2}}{2 ks/G}+\frac{s}{2/G} fbest (k)f2i=1ksi/GR2+i=1ksi2smin2ks/GR2+2/Gs
其中 R = ∥ x ( 0 ) − x ⋆ ∥ 2 R=\left\|x^{(0)}-x^{\star}\right\|_{2} R=x(0)x2,那么最优步长为 s = R / k s=R/\sqrt{k} s=R/k ,此时
f best  ( k ) − f ⋆ ≤ G R k f_{\text {best }}^{(k)}-f^{\star} \leq \frac{GR}{\sqrt{k}} fbest (k)fk GR
因此收敛速度为 O ( 1 / k ) O(1/\sqrt{k}) O(1/k ),对比之前光滑函数的梯度下降,收敛速度为 O ( 1 / k ) O(1/k) O(1/k)

我们对前面的收敛速度并不满意,如果有更多的信息,比如已知最优解 f ⋆ f^\star f 的大小,能不能改进收敛速度呢?根据前面的式子,有
∥ x + − x ⋆ ∥ 2 2 ≤ ∥ x − x ⋆ ∥ 2 2 − 2 t i ( f ( x ) − f ⋆ ) + t i 2 ∥ g ∥ 2 2 \left\|x^{+}-x^{\star}\right\|_{2}^{2} \leq\left\|x-x^{\star}\right\|_{2}^{2}-2 t_i\left(f(x)-f^{\star}\right)+t_i^{2}\|g\|_{2}^{2} x+x22xx222ti(f(x)f)+ti2g22
这实际上是关于 t i t_i ti 的一个二次函数,因此可以取 t i = f ( x ( i − 1 ) ) − f ⋆ ∥ g ( i − 1 ) ∥ 2 2 t_{i}=\frac{f\left(x^{(i-1)}\right)-f^{\star}}{\left\|g^{(i-1)}\right\|_{2}^{2}} ti=g(i1)22f(x(i1))f,就可以得到
f best  ( k ) − f ⋆ ≤ G R k f_{\text {best }}^{(k)}-f^{\star} \leq \frac{GR}{\sqrt{k}} fbest (k)fk GR
可见还是没有改进收敛速度。

如果引入强凸性质呢?如果假设满足 μ \mu μ 强凸,则 f ⋆ ≥ f k + g k T ( x k − x ⋆ ) + μ / 2 ∥ x k − x ⋆ ∥ 2 2 f^\star \ge f^k+g^{kT}(x^k-x^\star)+\mu/2\Vert x^k-x^\star\Vert_2^2 ffk+gkT(xkx)+μ/2xkx22,可以取 t k = 2 μ ( k + 1 ) t_k=\frac{2}{\mu(k+1)} tk=μ(k+1)2,那么就可以得到
f best  ( k ) − f ⋆ ≤ 2 G 2 μ ( k + 1 ) f_{\text {best }}^{(k)}-f^{\star} \leq \frac{2G^2}{\mu(k+1)} fbest (k)fμ(k+1)2G2

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
凸优化专栏
凸优化学习笔记 1:Convex Sets
凸优化学习笔记 2:超平面分离定理
凸优化学习笔记 3:广义不等式
凸优化学习笔记 4:Convex Function
凸优化学习笔记 5:保凸变换
凸优化学习笔记 6:共轭函数
凸优化学习笔记 7:拟凸函数 Quasiconvex Function
凸优化学习笔记 8:对数凸函数
凸优化学习笔记 9:广义凸函数
凸优化学习笔记 10:凸优化问题
凸优化学习笔记 11:对偶原理
凸优化学习笔记 12:KKT条件
凸优化学习笔记 13:KKT条件 & 互补性条件 & 强对偶性
凸优化学习笔记 14:SDP Representablity
凸优化学习笔记 15:梯度方法
凸优化学习笔记 16:次梯度
凸优化学习笔记 17:次梯度下降法

这篇关于凸优化学习笔记17:次梯度下降法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/312890

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、