【clip源码阅读】VisionTransformer

2023-10-31 03:45

本文主要是介绍【clip源码阅读】VisionTransformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

lib/python3.8/site-packages/clip/model.py#L206

class VisionTransformer(nn.Module):def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):super().__init__()self.input_resolution = input_resolutionself.output_dim = output_dimself.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)scale = width ** -0.5self.class_embedding = nn.Parameter(scale * torch.randn(width))self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))self.ln_pre = LayerNorm(width)self.transformer = Transformer(width, layers, heads)self.ln_post = LayerNorm(width)self.proj = nn.Parameter(scale * torch.randn(width, output_dim))def forward(self, x: torch.Tensor):# x: 输入原始图像,经过缩放,统一的大小为 224*224# 一幅输入224 x 224的图像,首先经过卷积处理得到16 x 16个patch,那么每一个patch的大小就是14 x 14# 将每一个patch的矩阵拉伸成为一个1维向量,从而获得了近似词向量堆叠的效果。上一步得道的14 x 14的patch就转换为长度为196的向量x = self.conv1(x)  # shape = [*, width, grid, grid]# 每个patch拉伸为1*196x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]# 加上class embedding变为1*197的向量# class_embedding主要借鉴了BERT模型的用于文本分类时的思想,在每一个word vector之前增加一个类别值,通常是加在向量的第一位,上一步得到的196维的向量加上class_embedding后变为197维。# 增加的class_embedding是一个可以学习的参数,经过网络的不断训练,最终以输出向量的第一个维度的输出来决定最后的输出类别;由于输入是16 x 16个patch,所以输出进行分类时是取 16 x 16个class_embedding进行分类。x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]# 加上1*197的position embedding# pos_embedding也是一组可以学习的参数,会被加入到经过处理的patch矩阵中# 它的加入类似于全链接网络和卷积的biasx = x + self.positional_embedding.to(x.dtype)# pre layer normx = self.ln_pre(x)x = x.permute(1, 0, 2)  # NLD -> LNDx = self.transformer(x)x = x.permute(1, 0, 2)  # LND -> NLD# post layer normx = self.ln_post(x[:, 0, :])# 由于增加的class_embedding是一个可以学习的参数,经过网络的不断训练# 最终以输出向量的第一个维度的输出来决定最后的输出类别# [bs, n_patch=257, dim=1024] -> [bs, dim=1024]      if self.proj is not None:x = x @ self.projreturn x

这篇关于【clip源码阅读】VisionTransformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/312593

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除