0-1背包问题【穷举法+二维dp数组】

2023-10-31 00:28

本文主要是介绍0-1背包问题【穷举法+二维dp数组】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:

使用穷举法解决0/1背包问题。问题描述:给定n个重量为{w1, w2, … ,wn}、价值为{v1, v2, … ,vn}

 的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,且要能够装到背包中。

穷举法:每件物品装还是不装有两种选择,使用0-表示不装,1表示装,n件物品就有2^n种,穷举2^n种,找到符合符合weight背包容量的且为价值最大的方式。

public class Main01 {//穷举法public void pack01(int weight,int[] wt,int[] val){int n = wt.length;int count= (int) Math.pow(2,n);int maxVal = 0;//枚举32种情况,并且记录符合weight重量背包的最大价值for (int i = 0; i < count; i++) {String res = String.format("%5s",Integer.toBinaryString(i)).replace(' ','0');System.out.print(res+"  ");int sumVal = 0;int sumWeight=0;for (int j = 0; j < n; j++) {//为1时表示装该物品 0表示不准装if (res.charAt(j)=='1') {sumVal += val[j];sumWeight += wt[j];}if (sumWeight<=weight){maxVal = Math.max(sumVal,maxVal);}}System.out.println("价值:"+sumVal+"重量:"+sumWeight);}//打印最大价值下对应的背包实际重量和所装物品的状态for (int i = 0; i<count; i++) {String res = String.format("%5s",Integer.toBinaryString(i)).replace(' ','0');int sumVal = 0;int sumWeight=0;for (int j = 0; j < n; j++) {if (res.charAt(j)=='1') {sumVal += val[j];sumWeight += wt[j];}}if (sumVal==maxVal&&sumWeight<=weight){System.out.println("当背包重量为"+weight+"时:最大价值:"+sumVal+"  总重量: "+sumWeight+"  方式:"+res);break;}}}public static void main(String[] args) {Main01 main01 = new Main01();int[] wt = {1, 2, 1, 12, 4};int[] val = {1, 2, 2, 4, 10};main01.pack01(15, wt, val);}
}

 输出结果:

 二维dp数组:

dp[i][w]数组含义:对于前i个物品,当前背包容量为w时,可装下的最大值是dp[i][w]。

dp[i-1][w-wt[i-1]]+val[i-1]:装物品i的价值

dp[i-1][w]:不装物品i的价值

因此dp[i][w]取装物品 i dp[i-1][w-wt[i-1]]+val[i-1]  和  不装物品i dp[i-1][w] 的最大值

public class Main01 {public static void main(String[] args) {int[] wt = {1, 2, 1, 12, 4};int[] val = {1, 2, 2, 4, 10};int res = pack01(15,wt,val);System.out.println("最大价值:"+res);}public static int pack01(int weight,int[] wt,int[] val){int n = wt.length;//dp[i][w]数组含义:对于前i个物品,当前背包容量为w时,可装下的最大值是dp[i][w]int[][] dp = new int[n+1][weight+1];for (int i = 1; i <= n; i++) {for (int w = 1; w <= weight; w++) {if (wt[i-1]>w){//不能装入背包dp[i][w] = dp[i-1][w];}else {//择优装入背包dp[i][w] = Math.max(dp[i-1][w-wt[i-1]]+val[i-1],dp[i-1][w]);}}}//打印dp表for (int i = 0; i <=n ; i++) {for (int j = 0; j <=weight ; j++) {if (j<weight){System.out.print(dp[i][j]+",");}else {System.out.print(dp[i][j]);}}System.out.println();}return dp[n][weight];}
}

输出结果:

这篇关于0-1背包问题【穷举法+二维dp数组】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/311540

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include