202310-宏基组学物种分析工具-MetaPhlAn4安装和使用方法-Anaconda3- centos9 stream

本文主要是介绍202310-宏基组学物种分析工具-MetaPhlAn4安装和使用方法-Anaconda3- centos9 stream,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MetaPhlAn 4是一种基于DNA序列的微生物组分析工具,它能够从宏基因组测序数据中识别和分离微生物的组成。以下是安装和使用MetaPhlAn 4的步骤:

安装MetaPhlAn 4:

裸机环境,手动安装

1. 安装依赖项:

MetaPhlAn 4需要Python 3.7以上的版本(建议使用Anaconda环境),同时还需要安装Biopython、pandas和numpy等包。可以使用pip命令进行安装,例如:

pip install biopython pandas numpy

2. 下载MetaPhlAn 4程序:

从MetaPhlAn 4的官方网站(https://github.com/biobakery/MetaPhlAn)下载最新的MetaPhlAn 4程序,并解压缩到指定目录中。

数据库地址(建议手动下载,地址及文件见下方)

要配置MetaPhlAn4最新数据库,您可以按照以下步骤进行操作:

1. 下载最新的MetaPhlAn4数据库文件,可以在MetaPhlAn4官方网站上下载。

2. 解压缩下载的MetaPhlAn4数据库文件,得到一个包含多个文件的目录。

3. 打开MetaPhlAn4配置文件,通常为"metaphlan_database.cfg",可以在MetaPhlAn4的安装目录中找到。

4. 在配置文件中,找到"bowtie2db"和"mpa_pkl"这两个参数,并将它们的值分别改为MetaPhlAn4数据库目录下的"bowtie2"和"mpa"文件的路径。

5. 保存配置文件。

使用conda环境安装(推荐)

本示例使用anaconda3,

以下是在anaconda3中安装MetaPhlAn4的步骤:

步骤1:安装conda

如果您尚未安装conda,请使用以下命令在终端中安装:

到这里去找安装包吧,什么版本都有,这里下载linux64最新版

https://repo.anaconda.com/archive

###下载安装包
wget https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linux-x86_64.sh
###安装
sh Anaconda3-2023.09-0-Linux-x86_64.sh###先进去后会要让同意许可协议,注意太快可能错过跳出,到后面慢一点向下翻
#到最后询问是否同意时输入yes
##遇到按键太快跳过的话重新执行安装命令再次进入#在配置安装目录时要注意输入自己想要安装的目录

步骤2:创建conda环境

打开终端并输入以下命令,创建一个名为“metaphlan4”的conda环境:

#创建metaphlan4的conda环境
conda create -n metaphlan4 python=3.7

步骤3:激活conda环境

输入以下命令,激活“metaphlan4”环境:

#激活指定环境
conda activate metaphlan4

步骤4:安装MetaPhlAn4

使用以下命令安装MetaPhlAn4:

#在激活环境中安装metaphlan
conda install -c bioconda -c conda-forge metaphlan#需要一点时间,等待完成

步骤5:测试MetaPhlAn4

输入以下命令测试安装是否成功:

metaphlan --version

如果可以正确显示版本信息,则安装成功。

步骤6:配置MetaPhlAn数据库

默认情况下可以使用metaphlan --install命令可以安装数据库,但有时候下载速度慢,可能引起失败,建议手动下载最新数据库:

地址在这里:http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/

下载这几个文件:

http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/bowtie2_indexes/mpa_vOct22_CHOCOPhlAnSGB_202212_bt2.md5

http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/bowtie2_indexes/mpa_vOct22_CHOCOPhlAnSGB_202212_bt2.tar http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/mpa_vOct22_CHOCOPhlAnSGB_202212.md5

http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/mpa_vOct22_CHOCOPhlAnSGB_202212.tar

http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/mpa_vOct22_CHOCOPhlAnSGB_202212_marker_info.txt.bz2

http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/mpa_vOct22_CHOCOPhlAnSGB_202212_species.txt.bz2

http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/mpa_latest

下载完成后将所有下载文件放入下面目录(根据自己安装目录找ananconda3的位置,后面路径都一样):

 anaconda3/envs/mpa/lib/python3.7/site-packages/metaphlan/metaphlan_databases

后面第一次去运行metaphlan去注释你的序列的时候会自动建库

使用MetaPhlAn 4:

1. 准备输入文件:MetaPhlAn 4需要输入FASTQ或FASTA格式的文件。如果是PE读取,需要将两个序列文件合并为一个文件。

2. 运行MetaPhlAn 4:在终端中进入MetaPhlAn 4的安装目录,并运行以下命令:

python3 metaphlan --input_file example.fastq --output_file output.txt

其中,--input_file参数指定输入文件的路径和名称,--output_file参数指定输出文件的路径和名称。

3. 查看结果:MetaPhlAn 4的输出文件包含了每个微生物的相对丰度和物种注释信息。可以使用文本编辑器或者Excel等软件打开输出文件进行查看和分析。

conda环境下使用MetaPhlAn4

##激活conda环境
source activate metaphlan4#直接使用压缩包文件运行,建议使用nohup运行,因为运行时间比较长
#nohup
nohup metaphlan f1.fastq.gz,r2.fastq.gz --bowtie2out f1r2.bowtie2.bz2 --nproc 60 --input_type fastq >f1r2_mtphlan.txt 2>&1 &
#直接运行
metaphlan f1.fastq.gz,r2.fastq.gz --bowtie2out f1r2.bowtie2.bz2 --nproc 60 --input_type fastq -o f1r2_mtphlan.txt####其中 f1.fastq.gz和r2.fastq.gz分别为样品的双端序列的两个压缩文件,最终我们想要的是f1r2_mtphlan.txt

结果解释:

###前面几行已被注释,使用MetaPhlAn工具合并时会自动过滤掉
#anaconda3/envs/metaphlan4/bin/metaphlan 1.fastq,2.fastq --bowtie2out 1.bt2.bz2 --nproc 30 --input_type fastq -o 1.profiled.txt
#76553269 reads processed
#SampleID	Metaphlan_Analysis
#clade_name	NCBI_tax_id	relative_abundance	additional_species
k__Bacteria	2	99.92666	
k__Archaea	2157	0.07334	
k__Bacteria|p__Proteobacteria	2|1224	89.13284	
k__Bacteria|p__Actinobacteria	2|201174	8.93442	
k__Bacteria|p__Bacteroidetes	2|976	1.83546	

私房菜:

###使用merge_metaphlan_tables.py将所有样品的注释结果合并(需要激活metaphlan4的conda环境)
merge_metaphlan_tables.py *.txt > merged_abundance_table.txt###使用下面语句从合并表中提取物种种水平下的物种注释信息
grep -E '(s__)|(clade_name)' merged_abundance_table.txt |grep -v 't__'|sed 's/^.*s__//g'|awk '{$2=null;print}'|sed 's/\ \ /\ /g'|sed 's/\ /\t/g' > merged_abundance_species.txt
###使用下面语句从合并表中提取物种属水平下的物种注释信息
grep -E '(g__)|(clade_name)' merged_abundance_table.txt |grep -v 's__'|sed 's/^.*g__//g'|awk '{$2=null;print}'|sed 's/\ \ /\ /g'|sed 's/\ /\t/g' > merged_abundance_genus.txt
###使用下面语句从合并表中提取物种科水平下的物种注释信息
grep -E '(f__)|(clade_name)' merged_abundance_table.txt |grep -v 'g__'|sed 's/^.*f__//g'|awk '{$2=null;print}'|sed 's/\ \ /\ /g'|sed 's/\ /\t/g' > merged_abundance_family.txt
###使用下面语句从合并表中提取物种目水平下的物种注释信息
grep -E '(o__)|(clade_name)' merged_abundance_table.txt |grep -v 'f__'|sed 's/^.*o__//g'|awk '{$2=null;print}'|sed 's/\ \ /\ /g'|sed 's/\ /\t/g' > merged_abundance_order.txt
###使用下面语句从合并表中提取物种纲水平下的物种注释信息
grep -E '(c__)|(clade_name)' merged_abundance_table.txt |grep -v 'o__'|sed 's/^.*c__//g'|awk '{$2=null;print}'|sed 's/\ \ /\ /g'|sed 's/\ /\t/g' > merged_abundance_class.txt
###使用下面语句从合并表中提取物种门水平下的物种注释信息
grep -E '(p__)|(clade_name)' merged_abundance_table.txt |grep -v 'c__'|sed 's/^.*p__//g'|awk '{$2=null;print}'|sed 's/\ \ /\ /g'|sed 's/\ /\t/g' > merged_abundance_phylum.txt

注意事项:

1. MetaPhlAn 4需要消耗大量的计算资源,建议在具有足够内存和计算能力的计算机上运行。

2. MetaPhlAn 4的结果可能会受到样本质量、参考基因组库的完整性和准确性等多种因素的影响。可以根据需要选择合适的参考基因组库进行分析,以获得更准确的结果。

Metaphlan分析结果的使用建议:

1. 了解Metaphlan输出格式:Metaphlan输出文件包括两个文件,即<filename>.txt和<filename>.txt.bak。其中,<filename>.txt文件是包含分类结果和相对丰度值的文本文件,<filename>.txt.bak文件是二进制文件存储的序列信息。

2. 解释Metaphlan输出结果:Metaphlan输出文件提供了各个分类单元的相对丰度值,这些单元包括细菌、古菌、真菌和叶绿体等。通过观察这些相对丰度值,可以了解样本中各个分类单元的富集度和活跃度。

3. 与其他工具结合使用:Metaphlan结果可以与其他宏基因组分析工具结合使用,如PICRUSt、STAMP和LEfSe等,这些工具可以进一步分析样本中的生物学差异。

4. 结果可视化:Metaphlan的结果可以用不同的可视化工具展示,如Circos、R、STAMP和Phinch等。这些工具可以帮助用户更直观地理解样品之间的差异以及分类单元的富集度。

总之,Metaphlan是一个强大的宏基因组分析工具,可以帮助用户快速了解样品中的微生物组成。将其结果与其他工具结合使用,可以更深入地挖掘样品差异,为后续的实验设计提供重要参考。

这篇关于202310-宏基组学物种分析工具-MetaPhlAn4安装和使用方法-Anaconda3- centos9 stream的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310817

相关文章

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Spring Cloud之注册中心Nacos的使用详解

《SpringCloud之注册中心Nacos的使用详解》本文介绍SpringCloudAlibaba中的Nacos组件,对比了Nacos与Eureka的区别,展示了如何在项目中引入SpringClo... 目录Naacos服务注册/服务发现引⼊Spring Cloud Alibaba依赖引入Naco编程s依

java导出pdf文件的详细实现方法

《java导出pdf文件的详细实现方法》:本文主要介绍java导出pdf文件的详细实现方法,包括制作模板、获取中文字体文件、实现后端服务以及前端发起请求并生成下载链接,需要的朋友可以参考下... 目录使用注意点包含内容1、制作pdf模板2、获取pdf导出中文需要的文件3、实现4、前端发起请求并生成下载链接使

Java springBoot初步使用websocket的代码示例

《JavaspringBoot初步使用websocket的代码示例》:本文主要介绍JavaspringBoot初步使用websocket的相关资料,WebSocket是一种实现实时双向通信的协... 目录一、什么是websocket二、依赖坐标地址1.springBoot父级依赖2.springBoot依赖

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

Linux虚拟机不显示IP地址的解决方法(亲测有效)

《Linux虚拟机不显示IP地址的解决方法(亲测有效)》本文主要介绍了通过VMware新装的Linux系统没有IP地址的解决方法,主要步骤包括:关闭虚拟机、打开VM虚拟网络编辑器、还原VMnet8或修... 目录前言步骤0.问题情况1.关闭虚拟机2.China编程打开VM虚拟网络编辑器3.1 方法一:点击还原VM