PE文件解析-异常处理表与数字签名

2023-10-30 21:20

本文主要是介绍PE文件解析-异常处理表与数字签名,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、异常处理表

1.位置及概述

    PE文件头可选映像头中数据目录表的第4成员IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_DIRECTORY_ENTRY_EXCEPTION]指向异常处理表,它保存在PE文件中,通常在".pdata"区段。

    x86系统采用动态的方式构建SEH结构,相比而言x64系统下采用静态的方式处理SEH结构。

2.异常处理表结构

    数据目录表的第四个元素指向异常表,RVA指向的是一个IMAGE_IA64_RUNTIME_FUNCTION_ENTRY的结构体,其结构如下:

typedef struct _IMAGE_IA64_RUNTIME_FUNCTION_ENTRY {DWORD BeginAddress;      //与SEH相关代码的起始偏移地址DWORD EndAddress;        //与SEH相关代码的末尾偏移地址DWORD UnwindInfoAddress; //指向描述上面两个字段之间代码异常信息的UNWIND_INFO
} IMAGE_IA64_RUNTIME_FUNCTION_ENTRY, *PIMAGE_IA64_RUNTIME_FUNCTION_ENTRY;

    BeginAddress与EndAddress之间,是异常处理函数的内容。UnwindInfoAddress指向的位置是用来描述BeginAddress与EndAddress之间的代码异常属性信息的UNWIND_INFO。UNWIND_INFO也叫作异常展开信息,此结构用来描述堆栈指针的记录属性与寄存器中保存的地址属性,它的结构体如下:

struct _UNWIND_INFO {UBYTE Version:3;        UBYTE Flags:5; UBYTE SizeOfProlog;        UBYTE CountOfCodes;   UBYTE FrameRegister:4;UBYTE FrameOffset:4;UNWIND_CODE UnwindCode[1];union {// If (Flags & UNW_FLAG_EHANDLER)OPTIONAL ULONG ExceptionHandler;//异常/终止函数的映像相对地址指针// Else if (Flags & UNW_FLAG_CHAININFO)OPTIONAL ULONG FunctionEntry;//展开信息链的映像相对地址指针};// If (Flags & UNW_FLAG_EHANDLER)ULONG ExceptionData[1];//异常处理程序的数据
} UNWIND_INFO, *PUNWIND_INFO;

Version:异常展开信息的版本号,一般为0x001
Flags:共有四种标志:
    1.当它为0x0的时候表示UNW_FLAG_NHANDLER,没有异常处理函数。
    2.当它为0x1的时候表示UNW_FLAG_EHANDLER,有异常处理函数。
    3.当它为0x2的时候表示UNW_FLAG_UHANDLER,有系统默认的处理函数。
    4.当它为0x4的时候表示UNW_FLAG_CHAININFO,表示FunctionEntry指向的是前一个RUNTIME_FUNCTION的RAV。
SizeOfProlog:函数起始部分字节的长度
CountOfCodes:UNWIND_INFO结构包含的UNWIND_CODE结构数
FrameRegister:寄存器帧指针,为0则指定函数不使用框架
FrameOffset:若上面字段不为0,表示函数偏移
UnwindCode:指定永久性寄存器与RSP的数组项目数
ExceptionHandler:异常句柄
FunctionEntry:展开信息链(函数)的映像相对地址指针(如果设置了UNW_FLAG_CHAININFO标识)
ExceptionData:异常处理程序的数据

异常处理相关内容参考自:https://blog.csdn.net/tutucoo/article/details/83828700

二、数字签名

1.位置描述

    数字签名有时又叫做安全表,用于存储Authenticode格式的数字签名。如果一个PE文件有数字签名,数据目录表的第5成员IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_DIRECTORY_ENTRY_SECURITY]就指向数字签名,判断方法是该数据目录的VirtualAddress成员不为0。该VirtualAddress不同于其他数据,在这里代表了文件偏移地址,而不是RVA地址。通常该结构存储在文件末尾。

    Authenticode®是一种数字签名格式,它是用来验证二进制软件的来源和完整性。Authenticode是基于公开密匙加密标准(PKCS) #7 来签名数据,并使用X.509证书来绑定经过数字签发的二进制程序与其软件发布者的身份的联系。这份文档包含Authenticode签名的结构和技术细节。

    这份文档不讨论如何签发/处理X.509证书,如何使用Windows SDK工具来签署二进制程序,如何部署代码签名基础设施,或者相关的Windows® API函数。这方面的相关信息可以查看在本文档最后的“资源”章节。

本资料应用于下列操作系统:
      Windows Server® 2008
      Windows Vista®
      Windows Server 2003
      Windows® XP
      Windows 2000

这里引用和讨论的相关资源列于这份文档的结尾。

在PE文件中的可信代码数字签名是PKCS #7 签名块结构。该签名可以保证:

·         这份软件源于某个确定的软件发布者。

·         这份软件自从签署以来没有经过修改。

一份PKCS #7 签名块结构包含该PE文件的哈希值、通过软件发布者私匙创建的签名以及将软件发布者的签名密匙绑定到一个合法实体的X.509 v3证书。一份PKCS #7签名块可以包含以下可选信息:

·         关于软件发布者的描述

·         软件发布者的链接

·         可信代码签名的时间戳

签名时间戳由时间戳权威机构(TSA)生成,并且保证软件发布者所做的签名在这个时间戳之前已经存在。这个时间戳可以延长了这个签名的生命期,即便相关的签名证书已经过期或者后来被废除。

可信代码签名可以被嵌入到Windows的PE文件中,位于PE文件的Optional Header Data Directories结构中Certificate Table所指向的位置。当可信代码签名被用于签署一个Windows PE文件时,计算文件数字签名哈希值的算法略过PE文件结构中的特定字段。当把数字签名嵌入文件时,签名过程可以修改这些字段,而不致于影响文件的哈希值。

图1显示了一幅简单的PE文件全局图,它描述了数字签名是如何包含在PE文件中的。它包含了嵌入的可信代码数字签名和指出那些被略过计算PE文件哈希值的PE结构字段。

关于PE文件结构的细节,请参阅“Microsoft Portable Executable and Common Object File Format Specification”(PE/COFF specification)。

关于可信代码数字签名中PKCS #7部分的细节,请参阅本文档后面的Abstract Syntax Notation version 1 (ASN.1) 结构定义。

关于可信代码数字签名如何计算PE文件哈希值的细节,参阅本文档后面的“Calculating the PE Image Hash”。

2.数字签名结构

    数据目录表的第5成员指向数字签名,该成员的VirtualAddress是数字签名的物理偏移地址,Size是签名文件的长度。该地址指向的是一个WIN_CERTIFICATE结构体。f

typedef struct _WIN_CERTIFICATE {DWORD       dwLength;WORD        wRevision;WORD        wCertificateType;   // WIN_CERT_TYPE_xxxBYTE        bCertificate[ANYSIZE_ARRAY];
} WIN_CERTIFICATE, *LPWIN_CERTIFICATE;

dwLength:此结构体的长度。
wRevision:在bCertificate里面保护的证书的版本号,版本号有两种,如下表,一般为0x0200。

信息Win32 SDK中的宏定义名
0x0100Win_Certificate的老版本WIN_CERT_REVISION_1_0
0x0200Win_Certificate的当前版本WIN_CERT_REVISION_2_0

wCertificateType:证书类型,有如下表格中的类型:

信息Win32 SDK中的宏定义名
0x0001X.509证书WIN_CERT_TYPE_X509
0x0002包含PKCS#7的SignedData的结构WIN_CERT_TYPE_PKCS_SIGNED_DATA
0x0003保留WIN_CERT_TYPE_RESERVED_1
0x0004终端服务器协议堆栈证书签名WIN_CERT_TYPE_TS_STACK_SIGNED

bCertificate:包含一个或多个证书,一般来说这个证书的内容一直到安全表的末尾。

这篇关于PE文件解析-异常处理表与数字签名的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310666

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM