水声多径信道下LMS仿真(Python代码)

2023-10-30 19:10

本文主要是介绍水声多径信道下LMS仿真(Python代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 模块的导入

做仿真,numpy应该都知道
arlpy是水声通信工具箱,不仅可以产生信道的冲激响应,还有一些通信相关的函数
bokeh是用来画图的,配合jupyter notebook使用很爽!!(Matplotlib是常用的绘图工具包,个人感觉bokeh更舒服…)

# 数组运算工具包
import numpy as np
# 水声通信工具包
import arlpy.uwa as au
import arlpy.uwapm as aup
import arlpy.comms as ac
# 绘图工具包
from bokeh.plotting import show, figure
from bokeh.layouts import gridplot
from bokeh.io import output_notebook
output_notebook()
import warnings
warnings.filterwarnings('ignore') 

2. 准备工作

2.1 水声信道的冲激响应

如何设置参数,得到冲激响应、衰减、时延等等在arlpy的官方文档中,都有介绍,可自行查阅
https://arlpy.readthedocs.io/en/latest/

# 设置环境参数
env = aup.create_env2d()
env['bottom_soundspeed'] = 1800
env['bottom_absorption'] = 0
env['depth'] = 100
env['max_angle'] = 30
env['min_angle'] = -30
env['frequency'] = 100
env['nbeams'] = 10
env['tx_depth'] = 20
env['rx_depth'] = 20
env['rx_range'] = 1000
# 假设声速在浅海环境下是递增的
sound_speed = np.zeros(shape=[6, 2])
for i in range(6):sound_speed[i, 0] = 20 * isound_speed[i, 1] = au.soundspeed(depth=20 * i)
env['soundspeed'] = sound_speedarrivals_sd = aup.compute_arrivals(env) # 声线到达的时间
delay_sd = min(arrivals_sd.time_of_arrival) # 端到端的传输时延
multidelay_sd = max(arrivals_sd.time_of_arrival) - \min(arrivals_sd.time_of_arrival) # 多径时延
fs = 100  # 信道的采样频率
cir_sd = aup.arrivals_to_impulse_response(arrivals_sd, fs=fs)
cir_sd = np.real(cir_sd)
cir_sd[(cir_sd < 0)] *= -1 # 信道的冲激响应

2.2 归一化及均衡代码

考虑到信道衰减比较大,在对信号进行处理的时候,需要考虑归一化的问题

def nor(x):'''param x: 带归一化信号return: 已归一化信号'''alpha = np.sum(np.square(x))/x.sizereturn x/np.sqrt(alpha)def equlization(sig_input, sig_expect, mu, M):'''param sig_input: 输入待均衡信号param sig_expect: 期望信号param mu: 均衡器步长param M: 均衡器长度return: (均衡后信号, 均方误差)'''n = sig_expect.sizeW = np.zeros(M)error = np.zeros(n)sig_output = np.zeros(n)if sig_input.size < n + M:sig_input = np.pad(sig_input, (0, n+M-sig_input.size))for i in range(n):input1 = sig_input[i:i+M]output = np.dot(W.T, input1)sig_output[i] = outputerror[i] = sig_expect[i] - outputW = W + mu * error[i] * input1J = np.square(error)return sig_output, J

3. 仿真

仿真的具体参数在调试时,有稍微改动,可自行调试

3.1 发射端

发射端使用了根升余弦滤波器进行滤波

N = 10000  # 数据点数
span = 4  # 升余弦滤波器范围
sps = 6  # 每符号采样率
rrc = ac.rcosfir(beta=0.5, sps=sps, span=span)
delay_rrc = int((rrc.size-1)/2)  # 经过滤波器之后,需要考虑滤波器的延迟sig_ori = ac.random_data(size=N, m=2) * 2 - 1
sig_exp = ac.upconvert(x=sig_ori, sps=sps, fs=0, fc=0)
sig_exp = nor(np.real(sig_exp))  # 使用ac.upconvert产生虚部为0的部分,为方便发图,取其实部
sig_tra = np.convolve(sig_exp, rrc)  # 发射滤波器的输出信号TOOLS = 'pan,box_zoom,xwheel_zoom,ywheel_zoom,crosshair,save,reset'  # 使用bokeh绘图时使用的交互工具
p1 = figure(tools=TOOLS, plot_width=800, plot_height=500,toolbar_location='above', toolbar_sticky=False)
p1.line(np.linspace(0, sig_exp.size-1, sig_exp.size),np.real(sig_exp), legend='sig_exp', line_color='red')
p1.line(np.linspace(0, sig_tra.size-1, sig_tra.size),np.real(sig_tra), legend='sig_tra-未考虑滤波器延迟',line_color='blue', line_dash='dashed')
p1.line(np.linspace(0, sig_tra.size-1-delay_rrc, sig_tra.size-delay_rrc),np.real(sig_tra[delay_rrc:]), legend='sig_tra-考虑滤波器延迟',line_color='green')
show(p1)

这个图是可以动的!

这个图是可以动的,横着拉,竖着拉,局部放大…(下面的图也是…)

3.2 多径信道

这里设置了三个不同的采样频率分别为100Hz,500Hz,1000Hz,得到的信道抽头个数分别为12,56,110,由仿真图可观察到采样频率越大,失真越严重

# fs = 100,信道长度为12
sig_isi1 = np.convolve(cir_sd, sig_tra)
sig_isi1 = nor(sig_isi1)p2 = figure(tools=TOOLS, plot_width=800, plot_height=300, title='信道长度为12',toolbar_location='left', toolbar_sticky=False)
p2.line(np.linspace(0, sig_exp.size-1, sig_exp.size),np.real(sig_exp), legend='sig_exp', line_color='red')
p2.line(np.linspace(0, sig_isi1.size-1-delay_rrc, sig_isi1.size-delay_rrc),np.real(sig_isi1[delay_rrc:]), legend='sig_isi-考虑滤波器延迟',line_color='green')fs = 500  # 信道的采样频率
cir_sd2 = aup.arrivals_to_impulse_response(arrivals_sd, fs=fs)
cir_sd2 = np.real(cir_sd2)
cir_sd2[(cir_sd2 < 0)] *= -1  # 信道的冲激响应
sig_isi2 = np.convolve(cir_sd2, sig_tra)
sig_isi2 = nor(sig_isi2)
p3 = figure(tools=TOOLS, plot_width=800, plot_height=300, title='信道长度为56',toolbar_location='left', toolbar_sticky=False)
p3.line(np.linspace(0, sig_exp.size-1, sig_exp.size),np.real(sig_exp), legend='sig_exp', line_color='red')
p3.line(np.linspace(0, sig_isi2.size-1-delay_rrc, sig_isi2.size-delay_rrc),np.real(sig_isi2[delay_rrc:]), legend='sig_isi-考虑滤波器延迟',line_color='green')fs = 1000  # 信道的采样频率
cir_sd3 = aup.arrivals_to_impulse_response(arrivals_sd, fs=fs)
cir_sd3 = np.real(cir_sd3)
cir_sd3[(cir_sd3 < 0)] *= -1  # 信道的冲激响应
sig_isi3 = np.convolve(cir_sd3, sig_tra)
sig_isi3 = nor(sig_isi3)
p4 = figure(tools=TOOLS, plot_width=800, plot_height=300, title='信道长度为110',toolbar_location='left', toolbar_sticky=False)
p4.line(np.linspace(0, sig_exp.size-1, sig_exp.size),np.real(sig_exp), legend='sig_exp', line_color='red')
p4.line(np.linspace(0, sig_isi3.size-1-delay_rrc, sig_isi3.size-delay_rrc),np.real(sig_isi3[delay_rrc:]), legend='sig_isi-考虑滤波器延迟',line_color='green')
show(p2)
show(p3)
show(p4)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

为了方便观察,使用抽头长度为12的信道

3.3 接收端

接收方式:(做以下两种方式的测试)
(1)先滤波再均衡
(2)先均衡再滤波

M = int(cir_sd3.size)
mu = 0.0001
sig_rec1 = np.convolve(rrc, sig_isi3)
[sig_equ1, temp] = equlization(sig_rec1[delay_rrc*2:], sig_exp, mu, M)p5 = figure(tools=TOOLS, plot_width=800, plot_height=300,toolbar_location='above', toolbar_sticky=False)
p5.line(np.linspace(0, sig_exp.size-1, sig_exp.size),np.real(sig_exp), legend='sig_exp', line_color='red')
p5.line(np.linspace(0, sig_equ1.size-1, sig_equ1.size),np.real(sig_equ1), legend='sig-先滤波再均衡',line_color='green')[sig_equ2, temp] = equlization(sig_isi3[delay_rrc:], sig_exp, mu, M)
sig_rec2 = np.convolve(sig_equ2, rrc)[delay_rrc:]
p5.line(np.linspace(0, sig_rec2.size-1, sig_rec2.size),np.real(sig_rec2), legend='sig-先均衡再滤波',line_color='blue')
show(p5)

在这里插入图片描述

3.4 判决并得到误码率

3.4 判决并得到误码率

1、只与原序列进行比较判决
2、在下采样之前就进行判决

def decision1(sig_ori, sig_res, sps):err = 0for i in range(sig_ori.size):if sig_res[i*sps+int(sps/2)] < 0:temp = -1else:temp = 1if temp != sig_ori[i]:err += 1return errdef decision2(sig_exp,sig_res):err = 0for i in range(sig_exp.size):if sig_res[i] < 0:temp = -1else:temp = 1if temp != sig_exp[i]:err  += 1return errprint(decision1(sig_ori,sig_equ1,sps)/N,decision1(sig_ori,sig_rec2,sps)/N)
print(decision2(sig_exp,sig_equ1)/N/sps,decision2(sig_ori,sig_rec2)/N/sps)
0.0298 0.0699
1.0 0.08368333333333333

在不同的采样频率下,得到的信道抽头个数就不同,具体均衡器的步长需要进一步设定。
经测试,调整步长的之后,误码率的结果还看的过去(比上面好看!)…

一花

第一次发博,关于Python、仿真或者其他地方有不好的地方,请批评我!!!

这篇关于水声多径信道下LMS仿真(Python代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309984

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(