python亲和度_Python数据挖掘 亲和性分析

2023-10-30 18:40

本文主要是介绍python亲和度_Python数据挖掘 亲和性分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文学习资源来自《Python数据挖掘入门与实践》中国工信出版集团 人民邮电出版社

亲和度

亲和度是用来表示一个实体与其他实体之间的亲和程度。

假设有两个实体E1和E2,如果他们从来没有被相同的活动使用,则他们的亲和度E(E1,E2)=0;如果他们总是同时被每一个活动所使用,则他们的亲和度E(E1,E2)=1。如果仅被某些活动一起使用,则其亲和度E(E1,E2)在(0,1)的区间内。

——百度百科

典型的应用场景:

购买一种商品的顾客可能要购买另一些商品

为网站用户提供服务推荐或定向广告

根据基因寻找有亲缘关系的人

亲和性有多种测量方法,如:

统计两件端口一起出售的频率,或者统计顾客购买了商品1后再买商品2的比率。

示例

运行环境:IPython notebook

数据 affinity_dataset.txt

数据示例

0 0 1 1 1

1 1 0 1 0

1 0 1 1 0

0 0 1 1 1

0 1 0 0 1

0 1 0 0 0

加载数据

import numpy as np

dataset_filename = "affinity_dataset.txt"

X = np.loadtxt(dataset_filename)

n_samples, n_features = X.shape

print("This dataset has {0} samples and {1} features".format(n_samples, n_features))

输出:

This dataset has 100 samples and 5 features。

4db4ad73b05185d2edde45b12c7988bc.png

数据涵义:

每列代表一种商品,分别为:面包、牛奶、奶酪、苹果、香蕉

输出为前5次交易中顾客都买了什么,第一条数据 0 0 1 1 1表示第一条交易中顾客购买了奶酪、苹果、香蕉。

1表示购买了,0表示未购买。

实现简单的排序规则

我们要找出“如果顾客购买了商品X,那么他们可能愿意购买商品Y”的规则。简单粗暴的做法是,找出数据集中所有同时购买的两件商品。找出规则后,还需要判断其优劣,我们挑好的规则用。

规则的优劣有多种衡量方法,常用的是支持度(support)和置信度(confidence)。

支持度

指数据集中规则应验的次数,统计起来很简单。有时候,还需要对支持度进行规范化,即再除以规则有效前提下的总数量。这里只是简单统计规则应验的次数。

支持度衡量的是给定规则应验的比例,而置信度衡量的则是规则准确率如何,即符合给定条件(即规则的“如果”语句所表示的前提条件)的所有规则里,跟当前规则结论一致的比例有多大。计算方法为首先统计当前规则的出现次数,再用它来除以条件(“如果”语句)相同的规则数量。

示例代码:

# The names of the features, for your reference.

features = ["bread", "milk", "cheese", "apples", "bananas"]

# First, how many rows contain our premise: that a person is buying apples

num_apple_purchases = 0

for sample in X:

if sample[3] == 1: # This person bought Apples

num_apple_purchases += 1

print("{0} people bought Apples".format(num_apple_purchases))

该代码计算确定购买苹果的顾客数量。

创建几个词典用来存放计算结果,使用defaultdict,需要统计的量有规则应验、规则无效及条件相同的规则数量。

7875e608ff256a2c3f02cb25a345326e.png

bb162d6e8ac3c3831f5f2628e3215d1b.png

其中置信度的计算方法:

confidence = defaultdict(float)

for premise, conclusion in valid_rules.keys():

confidence[(premise, conclusion)] = valid_rules[(premise, conclusion)] / num_occurences[premise]

定义打印规则:

def print_rule(premise, conclusion, support, confidence, features):

premise_name = features[premise]

conclusion_name = features[conclusion]

print("Rule: If a person buys {0} they will also buy {1}".format(premise_name, conclusion_name))

print(" - Confidence: {0:.3f}".format(confidence[(premise, conclusion)]))

print(" - Support: {0}".format(support[(premise, conclusion)]))

print("")

测试代码:

premise = 1

conclusion = 3

print_rule(premise, conclusion, support, confidence, features)

输出:

0cfd37cd58bf056148691b53fa04dfca.png

排序找出最佳规则

149f62ff1cf4b1c4b97bbfa8a4a733c3.png

该代码输出支持度最高的前5条规则 ,

如果要按置信度排序:

78094d2a633aa54e11bdaa1809257569.png

我们可以看到结果,“顾客买苹果,也会买奶酪”和“顾客买奶酪,也会买香蕉”,这两条规则的支持度和置信度都很高。

这篇关于python亲和度_Python数据挖掘 亲和性分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309850

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及