python亲和度_Python数据挖掘 亲和性分析

2023-10-30 18:40

本文主要是介绍python亲和度_Python数据挖掘 亲和性分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文学习资源来自《Python数据挖掘入门与实践》中国工信出版集团 人民邮电出版社

亲和度

亲和度是用来表示一个实体与其他实体之间的亲和程度。

假设有两个实体E1和E2,如果他们从来没有被相同的活动使用,则他们的亲和度E(E1,E2)=0;如果他们总是同时被每一个活动所使用,则他们的亲和度E(E1,E2)=1。如果仅被某些活动一起使用,则其亲和度E(E1,E2)在(0,1)的区间内。

——百度百科

典型的应用场景:

购买一种商品的顾客可能要购买另一些商品

为网站用户提供服务推荐或定向广告

根据基因寻找有亲缘关系的人

亲和性有多种测量方法,如:

统计两件端口一起出售的频率,或者统计顾客购买了商品1后再买商品2的比率。

示例

运行环境:IPython notebook

数据 affinity_dataset.txt

数据示例

0 0 1 1 1

1 1 0 1 0

1 0 1 1 0

0 0 1 1 1

0 1 0 0 1

0 1 0 0 0

加载数据

import numpy as np

dataset_filename = "affinity_dataset.txt"

X = np.loadtxt(dataset_filename)

n_samples, n_features = X.shape

print("This dataset has {0} samples and {1} features".format(n_samples, n_features))

输出:

This dataset has 100 samples and 5 features。

4db4ad73b05185d2edde45b12c7988bc.png

数据涵义:

每列代表一种商品,分别为:面包、牛奶、奶酪、苹果、香蕉

输出为前5次交易中顾客都买了什么,第一条数据 0 0 1 1 1表示第一条交易中顾客购买了奶酪、苹果、香蕉。

1表示购买了,0表示未购买。

实现简单的排序规则

我们要找出“如果顾客购买了商品X,那么他们可能愿意购买商品Y”的规则。简单粗暴的做法是,找出数据集中所有同时购买的两件商品。找出规则后,还需要判断其优劣,我们挑好的规则用。

规则的优劣有多种衡量方法,常用的是支持度(support)和置信度(confidence)。

支持度

指数据集中规则应验的次数,统计起来很简单。有时候,还需要对支持度进行规范化,即再除以规则有效前提下的总数量。这里只是简单统计规则应验的次数。

支持度衡量的是给定规则应验的比例,而置信度衡量的则是规则准确率如何,即符合给定条件(即规则的“如果”语句所表示的前提条件)的所有规则里,跟当前规则结论一致的比例有多大。计算方法为首先统计当前规则的出现次数,再用它来除以条件(“如果”语句)相同的规则数量。

示例代码:

# The names of the features, for your reference.

features = ["bread", "milk", "cheese", "apples", "bananas"]

# First, how many rows contain our premise: that a person is buying apples

num_apple_purchases = 0

for sample in X:

if sample[3] == 1: # This person bought Apples

num_apple_purchases += 1

print("{0} people bought Apples".format(num_apple_purchases))

该代码计算确定购买苹果的顾客数量。

创建几个词典用来存放计算结果,使用defaultdict,需要统计的量有规则应验、规则无效及条件相同的规则数量。

7875e608ff256a2c3f02cb25a345326e.png

bb162d6e8ac3c3831f5f2628e3215d1b.png

其中置信度的计算方法:

confidence = defaultdict(float)

for premise, conclusion in valid_rules.keys():

confidence[(premise, conclusion)] = valid_rules[(premise, conclusion)] / num_occurences[premise]

定义打印规则:

def print_rule(premise, conclusion, support, confidence, features):

premise_name = features[premise]

conclusion_name = features[conclusion]

print("Rule: If a person buys {0} they will also buy {1}".format(premise_name, conclusion_name))

print(" - Confidence: {0:.3f}".format(confidence[(premise, conclusion)]))

print(" - Support: {0}".format(support[(premise, conclusion)]))

print("")

测试代码:

premise = 1

conclusion = 3

print_rule(premise, conclusion, support, confidence, features)

输出:

0cfd37cd58bf056148691b53fa04dfca.png

排序找出最佳规则

149f62ff1cf4b1c4b97bbfa8a4a733c3.png

该代码输出支持度最高的前5条规则 ,

如果要按置信度排序:

78094d2a633aa54e11bdaa1809257569.png

我们可以看到结果,“顾客买苹果,也会买奶酪”和“顾客买奶酪,也会买香蕉”,这两条规则的支持度和置信度都很高。

这篇关于python亲和度_Python数据挖掘 亲和性分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309850

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e