使用bert复现spo抽取的一些随笔(仅作自己总结使用)

2023-10-30 18:10

本文主要是介绍使用bert复现spo抽取的一些随笔(仅作自己总结使用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开始下定决心以后慢慢总结,最近发现学习的时候需要总结思路,这样会更加清晰明了,提高学习效率。

随笔1

内容:bug,但是有正确代码对比

方向:基于bert的多标签任务,baiduRE.py

BUG说明:  tensorflow.python.framework.errors_impl.InvalidArgumentError: Key label_ids Can't parse serialized Example.

解决方式:1.找到在自己代码中错误的最后代码行数

                  2.说明问题在此行代码值之前

                  3.找到key:"label_ids"出现的位置,依次打上断点,对features进行观察

                  4.发现在file_based_input_fn_builder()函数之前,features格式都为一致

                  5.找到BUG发生地点,tf.FixedLenFeature([], tf.int64), 第一个参数没有添加label_length

思考:因为是基于有正确代码的对比,所以过程还不算艰辛,倘若是自己没头脑的调试,可能要花很长时间。这次想要总结一下的原因事发现自己有什么错误都喜欢直接复制BUG内容到网上查找,其实可以通过以往的经验以及些许英语水平思考得出结果。这样才能慢慢积累经验以及使得思路清晰。

随笔2

class FixedLenFeature(collections.namedtuple("FixedLenFeature", ["shape", "dtype", "default_value"])):#用于解析一个固定长度的feature输入

学习编程是一个需要动手实践的过程,需要在实践中不断积累,代码中的一些API就是像 1+1=2 基础知识一样,只有弄清楚且记住才能继续进行,不然步步维艰。

随笔3

多读代码,并且代码里面不懂函数可以直接看源码里的注释和示例,不一定需要上网百度。

学习编程是一个积累的过程,简单来说只有花费时间,让代码在自己的脑袋里面跑(读代码和写代码才有这个效果)。

随笔4

今天还是在bert的基础上改代码,一直在考虑如何复现一个损失函数,弄了半天,还是不对,式子到最后还有一部分没有弄清楚。可以说今天基本上算是一无所获,除了几个tf.cast之类的函数调用的更加熟练之外。效率之低令人发指。

这是我今天感觉到的一点问题

  1. 没有思考为什么就动手写代码,还自作聪明地省去了损失函数的后一部分,最后loss下降的很快,但是精度一丝丝都没有,看了模型给数据的预估值,发现每一个都是非常接近1。仔细思考后明白,当预测值取的非常大的时候,损失值可以达到非常小,所以说这个损失函数写的是完全失败的。其中的原因:粗心,没有深入思考。
  2. 在复现我的半吊子函数时,还出现了两个问题:一个表达式中少乘了一个式子,在浪费接近一个小时之后,发现并补上,之后又出现损失值一直飘向于负无穷;之后又发现最后的loss表达式少添加了一个符号,添加之后loss一直减小。原因:粗心,没有严格按照别人的来做。
  3. 在这个过程中,又发现了自己对tensorflow的基础知识严重不足,比如如何在bert中打印张量,到最后也没有找到解决方法,诸如一类session.run()和t.eval()全都试过,没有用处。思考:不要太过于坚持,如果坚持请不要一味百度搜索,自己从源码分析。再有不知道如何计算acc等评估参数,以至于不知道自己的模型到底有没有训练的价值,浪费了很长时间。思考:不要自己盲目地探索,要找到有效的方式。

最后

不要自己想当然!相信大牛!相信导师!相信自己!

今天心态很爆炸。

随笔5

今天继续阅读源码,看到eval模式下如何计算acc的问题:

source code:

predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(labels=label_ids, predictions=predictions, weights=is_real_example)

进入accuracy:嗯,看不太懂,简单来说就是输入预测值和真实值,进行比较,拿 比较的个数(count)/比较后正确的个数(total) 之后,便得到其准确率。

上google找一个例子来看看吧:

logits = [[0.1, 0.5, 0.4],[0.8, 0.1, 0.1],[0.6, 0.3, 0.2]]
labels = [[0, 1, 0],[1, 0, 0],[0, 0, 1]]acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels, 1), predictions=tf.argmax(logits,1))print(sess.run([acc, acc_op]))
print(sess.run([acc]))
# Output
#[0.0, 0.66666669]
#[0.66666669]

看起来很显而易见,但是为什么acc一开始为0.0?

继续下面的解释:

#初始化一些变量
logits = tf.placeholder(tf.int64, [2,3])
labels = tf.Variable([[0, 1, 0], [1, 0, 1]])acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels, 1),   predictions=tf.argmax(logits,1))sess = tf.Session()sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())stream_vars = [i for i in tf.local_variables()]
print(stream_vars)
#total,count 是两个accuracy函数在本地初始化的viriables
#访问acc,可以看到acc和[total,count]都没有变化
print('acc:',sess.run(acc, {logits:[[0,1,0],[1,0,1]]}))
#acc: 0.0
print('[total, count]:',sess.run(stream_vars)) 
#[total, count]: [0.0, 0.0]
#访问acc_op,可以看到acc_op和total,count,acc都更新了
print('ops:', sess.run(acc_op, {logits:[[0,1,0],[1,0,1]]})) 
#ops: 1.0print('[total, count]:',sess.run(stream_vars)) 
#[total, count]: [2.0, 2.0]print('acc:', sess.run(acc,{logits:[[1,0,0],[0,1,0]]}))
#acc: 1.0
#再次访问,准确率立即更新
print('op:',sess.run(acc_op,{logits:[[0,1,0],[0,1,0]]}))
#op: 0.75 
print('[total, count]:',sess.run(stream_vars)) 
#[total, count]: [3.0, 4.0]

所以我把acc简单的理解为一个缓冲区,在访问acc_op之前,把所有要进行acc计算的内容都存储起来,访问acc_op时,以先进先出的原则,拿出一个logits进行操作。

参考链接:https://stackoverflow.com/questions/46409626/how-to-properly-use-tf-metrics-accuracy

随笔6

事件:运行关系预测的代码模型

结果:

发现:正确答案中有一个关系出现多次,比如演员这个关系在一个text中多次出现—》关系完全正确的概率 是63.86%,在预测结果和正确结果之外加set的正确概率是75.5%左右,后面依次如图。虽然是sup的比例很大,但是观察数据发现,有部分预测出来的正确关系数据集并未标注。考虑如果实际应用其实这23%都可以加上。

思考(一个关系多次出现的解决方案):数据集原本按照是01打上标签,显然在关系多次出现的情况下特征损失。考虑按照按照关系出现的次数标注,等于一个label的输出可能对应多个(原本只是01,现在可能0123...)暂未实验,后续动手实践改进。

随笔7

事件:洗澡

内容:突然想到关于上文的想法是错误的。所需要研究的任务是一个管道式抽取,关系预测部分预测的结果虽然会有一个关系多次出现的情况,但是输入到后续的实体识别的模块,并无影响。比如输入的关系是演员,那么所有和演员关系相关的实体都被激活,他们的激活与否通过概率矩阵体现。

思考:如果不是洗澡时候突然脑袋一闪,可能明早又要浪费一早上去直接实现了。所以说,多加思考!(洗澡的时候好像确实脑袋更好使哈)

随笔8

bert运行的主要流程

  1. 处理好数据,输入bert。
  2. bert进行随机编码,可以任意切分输出的个数。
  3. 将每个输出的张量(predication)和对应的标签(target)传入loss_function进行计算再得到total_loss
  4. total_loss传入优化器,优化器根据loss的大小进行收敛,使得每个输出的张量和tartget越来越相似
  5. 得到训练好的模型

之前刚刚用squad脚本时,一直不明白create_model的输出为何一定符合期望,其实等于是给定model人类所期望的答案模式,然后让它去学习。

这篇关于使用bert复现spo抽取的一些随笔(仅作自己总结使用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309694

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的