【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC

2023-10-30 17:50

本文主要是介绍【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果要对硬币进行分类,我们对硬币根据不同的尺寸重量来告诉机器它是多少面值的硬币 这种对应的机器学习即使监督学习,那么如果我们不告诉机器这是多少面额的硬币,只有尺寸和重量,这时候让机器进行分类,希望机器对不同种类的硬币分类,这种机器学习方式就是无监督学习。可以从下图看出,监督学习,根据颜色(面值)可以得出不同种类,而无监督学习也可根据所样例在的不同区域对样例进行分类。

根据聚类分组clustering: {xn} -> cluster(x)

根据密度分组density estimation{Xn}->density(x)

根据离群值分组outlier detection{Xn}-> unusual(x)

是否告诉机器硬币的面额,可以分类为监督学习,半监督学习,无监督学习(告知硬币面额的用彩色标出,未告知的用蓝色标出)

 

 总结一下学习模式的区别

 

第二个例子:罐子取弹珠问题

现在假设一个罐子里有n个弹珠,分别是绿色与橙色,那么如何得出取绿色(橙色)的概率,现在设真实概率橙色为μ,而我们目前假设从中取出一部分弹珠,得出的橙色概率为v,那么我要做的就是让v和μ尽可能的接近,

 

 这里引出新的算法  PAC:可能近似正确(probably approximately correct,PAC)学习模型

假定数据按照某概率分布P从X中随机产生,一般,D可为任意分布,并且它对学习型算法是 未知的。对于P,所要求的是它的 稳定性,即该分布不会随时间变化(不然我们就没有学习的意义了)。训练数据的由P分布随机抽取而产生x,然后x及其目标值(可以理解为y,标签)被提供给学习器
学习器在学习目标函数时考虑可能假设的集合H。
在观察了一系列训练数据后,学习器需要从假设集合H中得到最终的假设g,这是对未知的符合D分布的理想模型f的估计。
最后,我们通过精心挑选出来的假设g对X中新的数据的性能来评估训练器。

学习过程如下图所示:

Eout用来描述h和f在整个罐子里一不一样,相当于μ,表示外部样本错误率,

Ein用来描述在资料上h和f的相似度,相当于v,表示资料样本错误率

f和P都是未知的

通过Ein推论出的Eout就是算法的目的,当Ein足够小的时候,Eout也是很小的 则h与f很接近(当资料继续从P产生) 

以上是PAC 的算法思想……

 

转载于:https://www.cnblogs.com/KID-XiaoYuan/p/7209939.html

这篇关于【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309612

相关文章

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动