BLIP2中Q-former详解

2023-10-30 17:46
文章标签 详解 blip2 former

本文主要是介绍BLIP2中Q-former详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Querying Transformer,在冻结的视觉模型和大语言模型间进行视觉-语言对齐。

为了使Q-Former的学习达到两个目标:

  1. 学习到和文本最相关的视觉表示。

  2. 这种表示能够为大语言模型所解释。

需要在Q-Former结构设计和训练策略上下功夫。具体来说,

  1. Q-Former是一个轻量级的transformer,它使用一个可学习的query向量集,从冻结的视觉模型提取视觉特征。

  2. 采取两阶段预训练策略

  • 阶段一:vision-language表示学习(representation learning),迫使Q-Former学习和文本最相关的视觉表示。

  • 阶段二:vision-to-language生成式学习(generative learning),将Q-Former的输出连接到冻结的大语言模型,迫使Q-Former学习到的视觉表示能够为大语言模型所解释。

Q-former结构

https://zhuanlan.zhihu.com/p/649132737

Q-Former由两个transfomer子模块组成,左边为(learnable) query encoder,右边为text encoder & decoder。记视觉模型的image encoder的输出为I。左边网络的(learnable) query为Q,右边网络的输入text为T。注意Q是一个向量集,非单个向量。它可以视为Q-Former的参数。

  • 左边的transformer和视觉模型image encoder交互,提取视觉表征,右边的transformer同时作为text encoder和decoder。

  • 左边的query encoder和右边的text encoder共享self-attention layer。

  • 通过self attention layer,实现Q向量之间的交互。

  • 通过cross attention layer,实现Q向量和I的交互。

  • Q和T之间的交互,也是通过共享的self attention layer实现的,不过根据训练目标的不同,通过不同的attention mask来实现不同的交互。

不同的交互任务如下:

  • ITC,使用单模态视觉和大语言模型各自的注意力掩码,Q向量和T之间没有交互。

  • ITM,使用双向注意力机制掩码(MLM),实现Q向量和T之间的任意交互。Q向量可以attention T,T也可以attention Q向量。

  • ITG,使用单向注意力机制掩码(CLM),实现Q向量和T之间的部分交互。Q向量不能attention T,T中的text token可以attention Q向量和前面的text tokens。

图文匹配任务与图文对比学习的主要区别是,引入了图文之间的cross attention,进行细粒度的图像和文本匹配用来预测,可以理解为单塔模型和双塔模型的区别

二阶段训练

阶段1

这个阶段使用image-text对进行多目标训练(ITC+ITM+ITG)。

这三个目标都是将视觉表示和文本表示T进行对齐,学习到最匹配文本的视觉表示。

这个多目标训练是在BLIP论文中提出的。在BLIP论文中提到,之所以同时训练三个目标,是为了让学习到的视觉表示可以同时做理解和生成下游任务。

ITC和ITM主要是为了适应图片分类、图片检索、VQA等理解类任务。ITG主要是为了适应Captioning等生成类任务。

ITC是对比学习,通过最大化positive image-text pair,最小化negative image-text pair。而ITM是二分类模型,加入一个linear layer,直接给image-text pair打分。

由于训练ITC目标时,为了防止信息泄露,image和text不能attention彼此,捕捉到的image-text交互信息有限。训练ITM允许image和text互相attention,而且是双向的,来捕捉到更细粒度的image-text交互信息。同时训练ITC、ITM这两个目标,互补一下,以更好地进行image-text对齐。

ITG目标的作用是训练Q-Former,让它具有在给定图片的情况下,生成文本的能力。

右边transformer,在ITC和ITM目标训练中,作为encoder,在ITG目标训练中,作为decoder。

阶段2

分别展示了对于decoder-only和encoder-decoder架构的大语言模型,预训练阶段二的示意图。

这个阶段是比较简单的,通过一个linear layer将Q-Former输出投射(project)成一个向量(和大语言模型的embedding一样维度),将它拼接到大语言模型的输入text的embedding前面,相当于一个soft prompt。

将Q-Former学习的文本和图像向量,加上一个全连接层(一个Linear,从768维到2560维),然后输入到大预言模型,预测文本输出。

  • Decoder only:将Q-former学到token直接输入,得到文本输出,论文中采用facebook的opt模型进行训练。

  • encoder-decoder:将Q-former学到token加上前缀词(如图中的a cat)一起输入,得到后续的文本输出,论文中采用FlanT5添加指令进行训练。

代码实现

  • Qformer初始化

encoder参考bert的encoder,偶数层增加cross_attention层

def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):# encoder_config = BertConfig.from_pretrained("bert-base-uncased")encoder_config = BertConfig.from_pretrained("./models/bert-base-uncased")encoder_config.encoder_width = vision_width# insert cross-attention layer every other blockencoder_config.add_cross_attention = Trueencoder_config.cross_attention_freq = cross_attention_freqencoder_config.query_length = num_query_tokenQformer = BertLMHeadModel(config=encoder_config)query_tokens = nn.Parameter(torch.zeros(1, num_query_token, encoder_config.hidden_size))query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)return Qformer, query_tokens

BERT 预训练任务包括两个:

  • Masked Language Model(MLM):在句子中随机用[MASK]替换一部分单词,然后将句子传入 BERT 中编码每一个单词的信息,最终用[MASK]的编码信息预测该位置的正确单词,这一任务旨在训练模型根据上下文理解单词的意思;

  • Next Sentence Prediction(NSP):将句子对 A 和 B 输入 BERT,使用[CLS]的编码信息进行预测 B 是否 A 的下一句,这一任务旨在训练模型理解预测句子间的关系。

https://tianchi.aliyun.com/forum/post/336298

  • BertForMaskedLM:只进行 MLM 任务的预训练;

    • 基于BertOnlyMLMHead,而后者也是对BertLMPredictionHead的另一层封装;

  • BertLMHeadModel:这个和上一个的区别在于,这一模型是作为 decoder 运行的版本;

    • 同样基于BertOnlyMLMHead;

  • BertForNextSentencePrediction:只进行 NSP 任务的预训练。

    • 基于BertOnlyNSPHead,内容就是一个线性层。

这篇关于BLIP2中Q-former详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309585

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

web群集--nginx配置文件location匹配符的优先级顺序详解及验证

文章目录 前言优先级顺序优先级顺序(详解)1. 精确匹配(Exact Match)2. 正则表达式匹配(Regex Match)3. 前缀匹配(Prefix Match) 匹配规则的综合应用验证优先级 前言 location的作用 在 NGINX 中,location 指令用于定义如何处理特定的请求 URI。由于网站往往需要不同的处理方式来适应各种请求,NGINX 提供了多种匹