杂记 | 基于OpenAIEmbedding向量存储的LangChain示例选择器(节省token、提升响应速度、提高回复准确性)

本文主要是介绍杂记 | 基于OpenAIEmbedding向量存储的LangChain示例选择器(节省token、提升响应速度、提高回复准确性),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 01 场景痛点
  • 02 示例选择器
  • 03 实现代码
  • 04 补充 - 最大余弦示例选择器


01 场景痛点

在使用ChatGPT的接口进行交互时,我们常常会通过提供示例的方式来提高大语言模型响应的准确性,在LangChain这一大语言模型通用开发框架中,这被称作few-shot。
然而,一次提供给大语言模型的示例并非越多越好,在一次输入中如果提供了太多的示例,可能造成以下问题:

  • 准确性下降:如果示例的情况比较复杂,过多的示例反而会让大模型产生困扰,尤其是在不那么聪明的gpt-3.5模型上
  • 成本上升:过多的示例文本必然导致token消耗的增加,提高了模型的使用成本
  • 响应时间变长:同理,过多的token会让大模型的处理速度变慢

02 示例选择器

为了解决这一问题,可以使用LangChain的示例选择器来实现,即根据用户的输入,从大量的示例中选出与输入最接近的几个示例,再给到大模型,而非每次都将全部的示例传入。

那么,如何实现从大量的示例中选出与输入最接近的几个示例呢?

最朴素的想法是让gpt来选,但这并没有真正解决问题,因为这属于一步拆成两步的操作。

而向量化的方法完美适配这一场景,OpenAI也提供了用于文本向量嵌入的Embedding模型。

其原理大致是这样的:

提供一个包含了大量示例的示例集,将这些示例中的每个示例转换为向量形式再存储到向量数据库,转换的过程使用OpenAI的Embedding模型,该模型的价格约为gpt3.5模型的1/15,且专门为文本向量化设计。
对于用户的一个输入,同样将其转换为向量表示,向量化后,不同向量之间便可以比较,此时再用用户的输入向量到向量数据库中查找最相似的几条向量,将其对应的原始示例文本添加到提示词中。

而这整个过程,都在LangChain中可以方便的实现。

03 实现代码

以语义相似示例选择器和嵌入式向量数据库Chroma为例。
使用前,需要先安装依赖库:

pip install chromadb tiktoken

python代码

from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate, PromptTemplate# 创建单个示例的范式模板
example_prompt = PromptTemplate(input_variables=["input", "output"],template="Input: {input}\nOutput: {output}",
)# 创建一个示例集 其中每个dict中的键名称要与范式模板的input_variables对应
examples = [{"input": "happy", "output": "sad"},{"input": "tall", "output": "short"},{"input": "energetic", "output": "lethargic"},{"input": "sunny", "output": "gloomy"},{"input": "windy", "output": "calm"},
]# 创建语义相似示例选择器
example_selector = SemanticSimilarityExampleSelector.from_examples(examples,  # 示例集OpenAIEmbeddings(),  # OpenAI的Embedding模型 用于将文本转换为向量Chroma,  # Chroma向量数据库 这是一个嵌入式向量数据库k=3  # 每次选择3个示例 不写这个参数默认会选择4个
)# 带示例的提示词模板
similar_prompt = FewShotPromptTemplate(example_selector=example_selector,  # 传入刚才创建好的示例选择器对象example_prompt=example_prompt,  # 单个示例的范式模板prefix="Give the antonym of every input",  # 示例前的提示语suffix="Input: {adjective}\nOutput:",  # 示例后的提示语input_variables=["adjective"],  # 用户的输入变量插槽
)# 输入感受 会选择happy/sad这一示例
print(similar_prompt.format(adjective="worried"), end=f"\n{'-' * 50}\n")# 输入度量 会选择tall/short这一示例
print(similar_prompt.format(adjective="large"), end=f"\n{'-' * 50}\n")# 新增示例 热情/冷漠
similar_prompt.example_selector.add_example({"input": "enthusiastic", "output": "apathetic"})
print(similar_prompt.format(adjective="passionate"))  # 热情

04 补充 - 最大余弦示例选择器

在LangChain中还有一种示例选择器,叫做最大余弦示例选择器,在使用时,仅需将上述代码中引入的“语义相似示例选择器进行替换即可”:

# 语义相似示例选择器
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
# 替换为 最大余弦示例选择器
from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector

关于二者的区别,LangChain文档的问答功能是这样回答的:

MaxMarginalRelevanceExampleSelector和SemanticSimilarityExampleSelector的主要区别如下:

  • 选择原理不同
    SemanticSimilarityExampleSelector仅根据embedding向量之间的相似度选择示例,选择与输入embedding向量最相似的示例。
    MaxMarginalRelevanceExampleSelector在选择最相似的示例的同时,还考虑示例之间的多样性。它会逐步选择相似度最高的示例,但会惩罚与已选择示例过于相似的示例,以保证选择结果的多样性。

  • 实现优化不同
    SemanticSimilarityExampleSelector仅需要计算输入与各示例embedding之间的相似度,实现简单。
    MaxMarginalRelevanceExampleSelector需要额外计算各示例embedding之间的相似度,实现更复杂。但可以产生更多样化的选择结果。

  • 使用场景不同
    当仅需要根据相似度选择示例时,SemanticSimilarityExampleSelector更适用。
    当需要同时考虑相似度和多样性时,MaxMarginalRelevanceExampleSelector更适用。

总体来说,MaxMarginalRelevanceExampleSelector相比SemanticSimilarityExampleSelector,选择机制更复杂,但可以产生更多样化的结果,
更适用于需要示例多样性的场景。两者各有优势,应根据实际需要选择使用。

不过据说OpenAI官方建议使用最大余弦示例选择器,读者可以对比各自使用效果后自信选择。

这篇关于杂记 | 基于OpenAIEmbedding向量存储的LangChain示例选择器(节省token、提升响应速度、提高回复准确性)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/308219

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

使用JavaScript操作本地存储

《使用JavaScript操作本地存储》这篇文章主要为大家详细介绍了JavaScript中操作本地存储的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录本地存储:localStorage 和 sessionStorage基本使用方法1. localStorage

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量