paddle2.0高层API实现基于seq2seq的对联生成

2023-10-30 10:30

本文主要是介绍paddle2.0高层API实现基于seq2seq的对联生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paddle2.0高层API实现基于seq2seq的对联生成

『深度学习7日打卡营·day5』

零基础解锁深度学习神器飞桨框架高层API,七天时间助你掌握CV、NLP领域最火模型及应用。

  1. 课程地址
    传送门:https://aistudio.baidu.com/aistudio/course/introduce/6771

  2. 目标

  • 掌握深度学习常用模型基础知识
  • 熟练掌握一种国产开源深度学习框架
  • 具备独立完成相关深度学习任务的能力
  • 能用所学为AI加一份年味

对联,是汉族传统文化之一,是写在纸、布上或刻在竹子、木头、柱子上的对偶语句。对联对仗工整,平仄协调,是一字一音的汉语独特的艺术形式,是中国传统文化瑰宝。

这里,我们将根据上联,自动写下联。这是一个典型的序列到序列(sequence2sequence, seq2seq)建模的场景,编码器-解码器(Encoder-Decoder)框架是解决seq2seq问题的经典方法,它能够将一个任意长度的源序列转换成另一个任意长度的目标序列:编码阶段将整个源序列编码成一个向量,解码阶段通过最大化预测序列概率,从中解码出整个目标序列。编码和解码的过程通常都使用RNN实现。


图1:encoder-decoder示意图

这里的Encoder采用LSTM,Decoder采用带有attention机制的LSTM。


图2:带有attention机制的encoder-decoder示意图

我们将以对联的上联作为Encoder的输出,下联作为Decoder的输入,训练模型。

生成对联部分结果

上联: 芳 草 绿 阳 关 塞 上 春 风 入 户	下联: 小 桥 流 水 人 家 中 喜 气 盈 门上联: 致 富 思 源 跟 党 走	下联: 脱 贫 致 富 为 民 圆上联: 欣 然 入 梦 抱 书 睡	下联: 快 意 临 风 把 酒 眠上联: 诗 赖 境 奇 赢 感 动	下联: 风 流 人 杰 显 精 神上联: 栀 子 牵 牛 犁 熟 地	下联: 莲 花 引 蝶 戏 开 花上联: 廿 载 相 交 成 知 己	下联: 千 秋 不 朽 著 文 章上联: 润	下联: 修上联: 设 帏 遇 芳 辰 百 岁 期 颐 刚 一 半	下联: 被 被 逢 盛 世 千 秋 俎 豆 尚 千 秋上联: 波 光 云 影 满 目 葱 茏 谁 道 人 间 无 胜 地	下联: 鸟 语 花 香 一 帘 幽 梦 我 听 天 下 有 知 音上联: 眸 中 映 月 心 如 镜	下联: 笔 底 生 花 气 若 虹上联: 何 事 营 生 闲 来 写 幅 青 山 卖	下联: 此 时 入 梦 醉 去 吟 诗 碧 水 流上联: 学 海 钩 深 毫 挥 具 见 三 长 足	下联: 书 山 登 绝 顶 摘 来 登 九 重 天上联: 女 子 千 金 一 笑 贵	下联: 男 儿 万 户 百 年 长上联: 柏 叶 为 铭 椒 花 献 瑞	下联: 梅 花 作 伴 凤 凤 鸣 春上联: 家 国 遽 亡 天 涯 有 客 图 恢 复	下联: 江 山 永 在 我 心 无 人 泪 滂 沱上联: 侍 郎 赋 咏 穷 三 峡	下联: 游 子 吟 诗 醉 九 江上联: 反 腐 堵 污 流 杜 渐 防 微 不 教 长 堤 崩 蚁 穴	下联: 倡 廉 增 正 气 阳 光 普 照 长 教 大 道 播 春 风上联: 已 兆 飞 熊 钓 渭 水	下联: 欲 栽 大 木 柱 长 天上联: 建 生 态 文 明 人 与 自 然 协 调 发 展	下联: 创 文 明 发 展 事 同 事 业 发 展 文 明上联: 于 自 不 高 于 他 不 下	下联: 以 人 为 本 为 我 无 为上联: 国 泰 民 安 军 民 人 人 歌 盛 世	下联: 民 安 国 泰 社 会 事 事 颂 和 谐上联: 金 龙 腾 大 地 看 四 野 平 畴 三 农 报 喜	下联: 玉 兔 跃 神 州 喜 九 州 大 地 万 户 迎 春上联: 兴 盛	下联: 平 安上联: 长 安 跑 马 谁 得 意	下联: 广 府 古 城 百 花 芳

AI Studio平台后续会默认安装PaddleNLP,在此之前可使用如下命令安装。

!pip install --upgrade paddlenlp>=2.0.0b -i https://mirror.baidu.com/pypi/simple
import paddlenlp
paddlenlp.__version__
'2.0.0rc1'
import io
import osfrom functools import partialimport numpy as npimport paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlenlp.data import Vocab, Pad
from paddlenlp.metrics import Perplexity
from paddlenlp.datasets import CoupletDataset

数据部分

数据集介绍

采用开源的对联数据集couplet-clean-dataset,该数据集过滤了
couplet-dataset中的低俗、敏感内容。

这个数据集包含70w多条训练样本,1000条验证样本和1000条测试样本。

下面列出一些训练集中对联样例:

上联:晚风摇树树还挺 下联:晨露润花花更红

上联:愿景天成无墨迹 下联:万方乐奏有于阗

上联:丹枫江冷人初去 下联:绿柳堤新燕复来

上联:闲来野钓人稀处 下联:兴起高歌酒醉中

加载数据集

paddlenlp.datasets中内置了多个常见数据集,包括这里的对联数据集CoupletDataset


paddlenlp.datasets均继承paddle.io.Dataset,支持paddle.io.Dataset的所有功能:

  • 通过len()函数返回数据集长度,即样本数量。
  • 下标索引:通过下标索引[n]获取第n条样本。
  • 遍历数据集,获取所有样本。

此外,paddlenlp.datasets,还支持如下操作:

  • 调用get_datasets()函数,传入list或者string,获取相对应的train_dataset、development_dataset、test_dataset等。其中train为训练集,用于模型训练; development为开发集,也称验证集validation_dataset,用于模型参数调优;test为测试集,用于评估算法的性能,但不会根据测试集上的表现再去调整模型或参数。
  • 调用apply()函数,对数据集进行指定操作。

这里的CoupletDataset数据集继承TranslationDataset,继承自paddlenlp.datasets,除以上通用用法外,还有一些个性设计:

  • CoupletDataset class中,还定义了transform函数,用于在每个句子的前后加上起始符<s>和结束符</s>,并将原始数据映射成id序列。

图3:token-to-id示意图
train_ds, dev_ds, test_ds = CoupletDataset.get_datasets(['train', 'dev', 'test'])
100%|██████████| 21421/21421 [00:00<00:00, 26153.43it/s]

来看看数据集有多大,长什么样:

print(len(train_ds), len(test_ds), len(dev_ds))# 加入了起始符和终止符
for i in range(5):print(train_ds[i])print()for i in range(5):print(test_ds[i])
702594 999 1000
([1, 447, 3, 509, 153, 153, 279, 1517, 2], [1, 816, 294, 378, 9, 9, 142, 32, 2])
([1, 594, 185, 10, 71, 18, 158, 912, 2], [1, 14, 105, 107, 835, 20, 268, 3855, 2])
([1, 335, 830, 68, 425, 4, 482, 246, 2], [1, 94, 51, 1115, 23, 141, 761, 17, 2])
([1, 126, 17, 217, 802, 4, 1103, 118, 2], [1, 125, 205, 47, 55, 57, 78, 15, 2])
([1, 1203, 228, 390, 10, 1921, 827, 474, 2], [1, 1699, 89, 426, 317, 314, 43, 374, 2])([1, 6, 201, 350, 54, 1156, 2], [1, 64, 522, 305, 543, 102, 2])
([1, 168, 1402, 61, 270, 11, 195, 253, 2], [1, 435, 782, 1046, 36, 188, 1016, 56, 2])
([1, 744, 185, 744, 6, 18, 452, 16, 1410, 2], [1, 286, 102, 286, 74, 20, 669, 280, 261, 2])
([1, 2577, 496, 1133, 60, 107, 2], [1, 1533, 318, 625, 1401, 172, 2])
([1, 163, 261, 6, 64, 116, 350, 253, 2], [1, 96, 579, 13, 463, 16, 774, 586, 2])
vocab, _ = CoupletDataset.get_vocab()
trg_idx2word = vocab.idx_to_token
vocab_size = len(vocab)pad_id = vocab[CoupletDataset.EOS_TOKEN]
bos_id = vocab[CoupletDataset.BOS_TOKEN]
eos_id = vocab[CoupletDataset.EOS_TOKEN]
print (pad_id, bos_id, eos_id)
2 1 2

构造dataloder

使用paddle.io.DataLoader来创建训练和预测时所需要的DataLoader对象。

paddle.io.DataLoader返回一个迭代器,该迭代器根据batch_sampler指定的顺序迭代返回dataset数据。支持单进程或多进程加载数据,快!


接收如下重要参数:

  • batch_sampler:批采样器实例,用于在paddle.io.DataLoader 中迭代式获取mini-batch的样本下标数组,数组长度与 batch_size 一致。
  • collate_fn:指定如何将样本列表组合为mini-batch数据。传给它参数需要是一个callable对象,需要实现对组建的batch的处理逻辑,并返回每个batch的数据。在这里传入的是prepare_input函数,对产生的数据进行pad操作,并返回实际长度等。

PaddleNLP提供了许多NLP任务中,用于数据处理、组batch数据的相关API。

API简介
paddlenlp.data.Stack堆叠N个具有相同shape的输入数据来构建一个batch
paddlenlp.data.Pad将长度不同的多个句子padding到统一长度,取N个输入数据中的最大长度
paddlenlp.data.Tuple将多个batchify函数包装在一起

更多数据处理操作详见: https://github.com/PaddlePaddle/PaddleNLP/blob/develop/docs/data.md

def create_data_loader(dataset):data_loader = paddle.io.DataLoader(dataset,batch_sampler=None,batch_size=batch_size,collate_fn=partial(prepare_input, pad_id=pad_id))return data_loaderdef prepare_input(insts, pad_id):src, src_length = Pad(pad_val=pad_id, ret_length=True)([inst[0] for inst in insts])tgt, tgt_length = Pad(pad_val=pad_id, ret_length=True)([inst[1] for inst in insts])tgt_mask = (tgt[:, :-1] != pad_id).astype(paddle.get_default_dtype())return src,<

这篇关于paddle2.0高层API实现基于seq2seq的对联生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/307277

相关文章

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

springboot filter实现请求响应全链路拦截

《springbootfilter实现请求响应全链路拦截》这篇文章主要为大家详细介绍了SpringBoot如何结合Filter同时拦截请求和响应,从而实现​​日志采集自动化,感兴趣的小伙伴可以跟随小... 目录一、为什么你需要这个过滤器?​​​二、核心实现:一个Filter搞定双向数据流​​​​三、完整代码