[深度学习从入门到女装]High-Resolution Representations for Labeling Pixels and Regions

本文主要是介绍[深度学习从入门到女装]High-Resolution Representations for Labeling Pixels and Regions,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:High-Resolution Representations for Labeling Pixels and Regions

一篇使用HRNet进行语义分割和目标检测论文
HRNet=high resolution Net

low resolution net就是用于分类的网络,通过stride逐步减少resolution,获取语义信息,最终得到分类
但是这种low-resolution net对于目标检测或者语义分割来说是不可兼容的,因此语义分割最终需要的结果是high-resolution的,也就是每个pixel的class
因此,目前获得high-resolution的网络有两种方式
1、第一种是类似于encoder-decoder的网络,如U-net,SegNet等,就是先使用down-sampling降低resolution获取语义信息,再通过upsample增加resolution获得空间信息
2、第二种是整个网络都保持high-resolution,并且使用平行线路来得到low-resolution,如GrideNet

HRNet就是使用第二种思路,使用平行的low-resolution和high-resolution进行concate得到high-resolution的表示
网络结构如下图所示
在这里插入图片描述

在这里插入图片描述
上图中的a为multi-resolution group conv,也就是简单的对于group conv的拓展,将input channels分为多个subset然后进行常规conv
上图中的b为multi-resolution conv
上图中的c为常规conv,可以看到常规conv可以将input channels和outputs channels都分为不同的subsets,然后进行一个全连接,每个连接是一个常规的conv

在这里插入图片描述
上图中的a为HRNetV1的多resolution融合的模块,可以看到,多个resolution的feature map作为输入,最终只得到了一个high-resolution,不可避免的丢失了一些low-resolution的信息
上图中的b为用于语义分割的block,将多个resolution进行concate得到一个最终的输出
上图中的c为用于目标检测的block,因为目标检测需要多个resolution的feature map,因此对于融合后的feature map再进行dowmsampling

语义分割网络结构

1、首先使用两个stride=2 的33conv对原图进行处理,将分辨率降为1/4
2、使用图1中的网络进行多个resolution的平行conv,channels数分别为C,2C,4C,8C
3、最终使用1
1的卷积对多个resolution进行融合得到15C的channels
4、最终的feature map进行4次bilinear upsampling得到最终结果

这篇关于[深度学习从入门到女装]High-Resolution Representations for Labeling Pixels and Regions的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/306819

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操