数字频带传输——二进制数字调制及MATLAB仿真

2023-10-30 05:15

本文主要是介绍数字频带传输——二进制数字调制及MATLAB仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、OOK
    • 1、表达式
    • 2、功率谱密度
    • 3、调制框图
  • 二、2PSK
    • 1、表达式
    • 2、功率谱密度
  • 三、2FSK
    • 1、表达式
  • 四、MATLAB 仿真
    • 1、MATLAB 源码
    • 2、仿真及结果
      • ①、输入信号及频谱图
      • ②、2ASK 调制
      • ③、2PSK 调制
      • ④、2FSK 调制
      • ⑤、随机相位 2FSK 调制
  • 五、资源自取


前言

数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信中的一样,可以通过对基带信号的频谱搬移来适应信道特性,也到同样的目的可以采用频率调制、相位调制的方式来达到同样的目的。

本文将主要通过 Matlab 来学习二进制的调制解调方式,包括 OOK、2PSK、2FSK,并分析和仿真这些调制系统。


一、OOK

1、表达式

如果将二进制码元 “0” 对应信号 0,“1” 对应信号 A c o s 2 π f c t Acos2\pi f_ct Acos2πfct,则 OOK 信号可以写成如下表达式:
s ( t ) = ∑ n a n g ( t − n T s ) A c o s 2 π f c t s(t)={\sum_na_ng(t-nT_s)}Acos2\pi f_ct s(t)=nang(tnTs)Acos2πfct
其中, a n ∈ a_n\in an {0,1}, g ( t ) = { 1 0 ≤ t ≤ T s 0 其他 g(t)=\begin{cases} 1& 0\le t \le T_s \\ 0& \text{其他} \end{cases} g(t)={100tTs其他

可以看到,上式是数字基带信号 m ( t ) = ∑ n a n g ( t − n T s ) m(t)=\sum_na_ng(t-nT_s) m(t)=nang(tnTs) 经过 DSB 调制后形成的信号,OOK 信号波形如下图所示:
在这里插入图片描述

OOK 信号波形

2、功率谱密度

OOK 信号的功率谱密度为:
P s ( f ) = A 2 4 [ P m ( f − f c ) + P m ( f + f c ) ] P_s(f)=\frac{A^2}{4}[P_m(f-f_c)+P_m(f+f_c)] Ps(f)=4A2[Pm(ffc)+Pm(f+fc)]

3、调制框图

OOK 的调制框图如下图所示:
在这里插入图片描述

OOK 信号调制框图

二、2PSK

1、表达式

将二进制码元 “0” 对应相位为 π \pi π 的载波 − A c o s 2 π f c t -Acos2\pi f_ct Acos2πfct,“1” 对应相位为 0 的载波 A c o s 2 π f c t Acos2 \pi f_ct Acos2πfct,则 2PSK 信号可以写成如下表达式:
s ( t ) = ∑ n a n g ( t − n T s ) A c o s 2 π f c t s(t)={\sum_na_ng(t-nT_s)}Acos2\pi f_ct s(t)=nang(tnTs)Acos2πfct
其中, a n ∈ a_n\in an {+1,-1}, g ( t ) = { 1 0 ≤ t ≤ T s 0 其他 g(t)=\begin{cases} 1& 0\le t \le T_s \\ 0& \text{其他} \end{cases} g(t)={100tTs其他

2PSK 信号波形如下图所示,其实现框图与 OOK 相同,只是输入是双极性的
在这里插入图片描述

2PSK 信号波形

2、功率谱密度

2PSK 信号的功率谱密度为:
P s ( f ) = A 2 4 [ P m ( f − f c ) + P m ( f + f c ) ] P_s(f)=\frac{A^2}{4}[P_m(f-f_c)+P_m(f+f_c)] Ps(f)=4A2[Pm(ffc)+Pm(f+fc)]

三、2FSK

1、表达式

将二进制码元 “0” 对应载波 A c o s 2 π f 1 t Acos2 \pi f_1t Acos2πf1t,“1” 对应载波 A c o s 2 π f 2 t Acos2\pi f_2t Acos2πf2t,则形成 2FSK 信号,可以写成如下表达式:
s ( t ) = ∑ n a n ‾ g ( t − n T s ) A c o s ( 2 π f 1 t + φ n ) + ∑ n a n g ( t − n T s ) A c o s ( 2 π f 1 t + θ n ) s(t)=\sum_n \overline{a_n}g(t-nT_s)Acos(2\pi f_1t+\varphi_n)+\sum_n a_ng(t-nT_s)Acos(2\pi f_1t+\theta_n) s(t)=nang(tnTs)Acos(2πf1t+φn)+nang(tnTs)Acos(2πf1t+θn)
a n = 1 a_n=1 an=1 时,对应的传输信号频率为 f 2 f_2 f2,当 a n = 0 a_n=0 an=0 时,对应的传输信号频率为 f 1 f_1 f1,上式中, φ n \varphi_n φn θ n \theta_n θn 时两个频率波的初相。2FSK 也可以写成另外的形式如下:
s ( t ) = A c o s [ 2 π f c t + 2 π h ∑ n = − ∞ ∞ a n g ( t − n T s ) ] s(t)=Acos[2\pi f_ct+2\pi h\sum_{n=-\infty}^{\infty}{a_n}g(t-nT_s)] s(t)=Acos[2πfct+2πhn=ang(tnTs)]
其中, a n ∈ a_n\in an {+1,-1}, f c = ( f 1 + f 2 ) / 2 f_c=(f_1+f_2)/2 fc=(f1+f2)/2 g ( t ) = { 1 0 ≤ t ≤ T s 0 其他 g(t)=\begin{cases} 1& 0\le t \le T_s \\ 0& \text{其他} \end{cases} g(t)={100tTs其他 h = ∣ f c − f 1 ∣ h=|f_c-f_1| h=fcf1 为频偏,其波形如下图所示:
在这里插入图片描述

2FSK 波形

2FSK 信号可以看成是两个不同载波的 OOK 信号的叠加:
s ( t ) = s 1 ( t ) c o s ( ω t + ϕ 1 ) + s 2 ( t ) c o s ( ω t + ϕ 2 ) s(t)=s_1(t)cos(\omega t+\phi_1)+s_2(t)cos(\omega_t+\phi_2) s(t)=s1(t)cos(ωt+ϕ1)+s2(t)cos(ωt+ϕ2)
当这两项不相关时(如载波之间频率差足够大),它的功率谱密度为:
P s = 1 4 [ P s 1 ( f + f 1 ) + P s 1 ( f − f 1 ) ] + 1 4 [ P s 2 ( f + f 1 ) + P s 1 ( f − f 2 ) ] P_s=\frac{1}{4}[P_{s1}(f+f_1)+P_{s1}(f-f_1)]+\frac{1}{4}[P_{s2}(f+f_1)+P_{s1}(f-f_2)] Ps=41[Ps1(f+f1)+Ps1(ff1)]+41[Ps2(f+f1)+Ps1(ff2)]

四、MATLAB 仿真

以下代码使用 MATLAB 产生独立等概的二进制信源,并完成了下面三个功能:

  • 画出 OOK 信号波形及其功率谱;
  • 画出 2PSK 信号波形及其功率谱;
  • 画出 2FSK 信号波形及其功率谱(设 ∣ f 1 − f 2 ∣ > > 1 T s |f_1-f_2|>>\frac{1}{T_s} f1f2>>Ts1)。

1、MATLAB 源码

% 2ASK,2PSK
clear all;
close all;A  = 1;
fc = 2;                                     % 2Hz;
N_sample = 8; 
N  = 500;                                   % 码元数
Ts = 1;                                     % 1 baud/sdt = Ts/fc/N_sample;                        % 波形采样间隔
t = 0 : dt : N*Ts-dt;
T = dt * length(t);
Lt = length(t);% 产生二进制信源
d = sign(randn(1, N));                      
dd = sigexpand((d+1)/2, fc*N_sample);
gt = ones(1, fc*N_sample);                   % NRZ 波形figure(1)
subplot(221);                               % 输入 NRZ 信号波形(单极性)
d_NRZ = conv(dd, gt);
plot(t, d_NRZ(1:length(t))); 
axis([0 10 0 1.2]); xlabel('t/s'); ylabel('输入信号');subplot(222);                               % 输入 NRZ 频谱
[f, d_NRZf] = T2F(t, d_NRZ(1:length(t)));
plot(f, 10*log10(abs(d_NRZf).^2/T));
axis([-2 2 -50 10]); xlabel('f/Hz'); ylabel('输入信号功率谱密度(dB/Hz)');%2ASK信号
ht = A*cos(2*pi*fc*t);
s_2ask = d_NRZ(1:Lt).*ht;subplot(223)
plot(t,s_2ask);
axis([0 10 -1.2 1.2]); xlabel('t/s'); ylabel('2ASK');[f, s_2askf]=T2F(t, s_2ask );
subplot(224)
plot(f, 10*log10(abs(s_2askf).^2/T));
axis([-fc-4 fc+4 -50 10]); xlabel('f/Hz'); ylabel('2ASK功率谱密度(dB/Hz)');figure(2)
%2PSK信号
d_2psk = 2*d_NRZ-1;
s_2psk = d_2psk(1:Lt).*ht;
subplot(221)
plot(t,s_2psk);
axis([0 10 -1.2 1.2]); xlabel('t/s'); ylabel('2PSK');subplot(222)
[f, s_2pskf] = T2F(t, s_2psk);
plot( f, 10*log10(abs(s_2pskf).^2/T) );
axis([-fc-4 fc+4 -50 10]); xlabel('f/Hz'); ylabel('2PSK功率谱密度(dB/Hz)');% 2FSK
% s_2fsk = Acos(2*pi*fc*t + int(2*d_NRZ-1) );sd_2fsk = 2*d_NRZ-1;s_2fsk = A*cos(2*pi*fc*t + 2*pi*sd_2fsk(1:length(t)).*t );
subplot(223)
plot(t, s_2fsk);
axis([0 10 -1.2 1.2]);xlabel('t/s'); ylabel('2FSK')
subplot(224)
[f, s_2fskf] = T2F(t, s_2fsk);
plot(f, 10*log10(abs(s_2fskf).^2/T));
axis([-fc-4 fc+4 -50 10]); xlabel('f/Hz'); ylabel('2FSK功率谱密度(dB/Hz)');% 随机相位 2FSK
fai = 2*pi*rand(1, N);
fai_2fsk = sigexpand(fai, fc*N_sample);
fai_2fsk = conv(fai_2fsk, gt);
s_2fskd = A*cos(2*pi*fc*t + 2*pi*sd_2fsk(1:length(t)).*t + fai_2fsk(1:length(t)) );
figure(3)
subplot(211);
plot(t, s_2fskd);
axis([0 10 -1.2 1.2]); xlabel('t/s'); ylabel('随机相位 2FSK');
[f, s_2fskdf] = T2F(t, s_2fskd);
subplot(212);
plot(f, 10*log10(abs(s_2fskdf).^2/T));
axis([-fc-4 fc+4 -50 10]); xlabel('f/Hz'); ylabel('随机相位 2FSK 功率谱密度(dB/Hz)');

2、仿真及结果

①、输入信号及频谱图

在这里插入图片描述

②、2ASK 调制

在这里插入图片描述

③、2PSK 调制

在这里插入图片描述

④、2FSK 调制

在这里插入图片描述

⑤、随机相位 2FSK 调制

在这里插入图片描述

五、资源自取

二进制数字调制及MATLAB仿真
在这里插入图片描述


我的qq:2442391036,欢迎交流!


这篇关于数字频带传输——二进制数字调制及MATLAB仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305804

相关文章

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

usaco 1.2 Name That Number(数字字母转化)

巧妙的利用code[b[0]-'A'] 将字符ABC...Z转换为数字 需要注意的是重新开一个数组 c [ ] 存储字符串 应人为的在末尾附上 ‘ \ 0 ’ 详见代码: /*ID: who jayLANG: C++TASK: namenum*/#include<stdio.h>#include<string.h>int main(){FILE *fin = fopen (

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };

perl的学习记录——仿真regression

1 记录的背景 之前只知道有这个强大语言的存在,但一直侥幸自己应该不会用到它,所以一直没有开始学习。然而人生这么长,怎就确定自己不会用到呢? 这次要搭建一个可以自动跑完所有case并且打印每个case的pass信息到指定的文件中。从而减轻手动跑仿真,手动查看log信息的重复无效低质量的操作。下面简单记录下自己的思路并贴出自己的代码,方便自己以后使用和修正。 2 思路整理 作为一个IC d

AIGC6: 走进腾讯数字盛会

图中是一个程序员,去参加一个技术盛会。AI大潮下,五颜六色,各种不确定。 背景 AI对各行各业的冲击越来越大,身处职场的我也能清晰的感受到。 我所在的行业为全球客服外包行业。 业务模式为: 为国际跨境公司提供不同地区不同语言的客服外包解决方案,除了人力,还有软件系统。 软件系统主要是提供了客服跟客人的渠道沟通和工单管理,内部管理跟甲方的合同对接,绩效评估,BI数据透视。 客服跟客人

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑燃料电池和电解槽虚拟惯量支撑的电力系统优化调度方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python

通信工程学习:什么是2ASK/BASK二进制振幅键控

2ASK/BASK:二进制振幅键控         2ASK/BASK二进制振幅键控是一种数字调制技术,其全称是二进制振幅键控(Binary Amplitude Shift Keying)。该技术通过改变载波的振幅来传递二进制数字信息,而载波的频率和相位则保持不变。以下是关于2ASK/BASK二进制振幅键控的详细解释: 一、2ASK/BASK二进制振幅键控的基本原理 1、振幅键控: