【python量化】将DeepAR用于股票价格多步概率预测

2023-10-30 04:20

本文主要是介绍【python量化】将DeepAR用于股票价格多步概率预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

e10894fcaf95604bf5b41eef8921dcdf.png

写在前面

DeepAR是亚马逊提出的一种针对大量相关时间序列建模的预测算法,该算法采用了深度学习的技术,通过在大量时间序列上训练自回归递归网络模型,可以从相关的时间序列中有效地学习全局模型,并且能够学习复杂的模式,例如季节性,周期性等特性,从而实现对各条时间序列进行预测。下面的这篇文章主要教大家如何搭建一个基于DeepAR的简单预测模型,并将其用于股票价格预测当中。

1

DeepAR模型

DeepAR采用了以RNN模型为基础的seq2seq架构,实现多步概率预测。具体地,首先用encoder对conditioning range的数据,也即是过去的历史数据进行编码,得到隐层输出,然后将其作为decoder网络的初始化隐层状态。之后,经过decoder的多次迭代,将输出的结果转化为概率分布的参数,从而实现通过DeepAR得到预测的概率分布。其中,对于训练数据,prediction range的数据,也即是ground truth数据是已知的,所以可以直接用于decoder的输入,来实现通过最大化似然函数对于模型参数进行训练。而对于测试数据,prediction range是没有给定的,所以就需要通过上一时刻的值进行采样,得到一个估计值用于不断迭代输出。模型的基本架构如下所示:

e89ce31fe88100a92069bfd829e44648.png

模型架构

相比于传统的时间序列预测模型,如ARIMA、VAR,DeepAR则可以很方便地将额外信息进行引入,并且其预测目标是序列在每个时间步上取值的概率分布。相比于直接预测数据,概率预测更有实际意义。

2

环境配置

DeepAR模型的实现主要依赖于GluonTS库 (Gluon Time Series),它是一个专门为概率时间序列建模而设计的工具包,由亚马逊开源维护。GluonTS 简化了时间序列模型的开发和实验,常用于预测或异常检测等常见任务。股票数据的获取通过baostock库进行实现。

库版本:

baostock              0.8.8
mxnet                 1.7.0.post2
gluonts               0.9.4
matplotlib            3.5.1

3

代码实现

1、数据获取

首先,定义一个数据获取的函数,其中通过baostock库获取指定代码股票从2020/1/1到2022/1/1两年的日线数据。

def get_stockdata(code):rs = bs.query_history_k_data_plus(code,'date,close,volume,turn',start_date='2020-01-01',end_date='2022-01-01',frequency='d', adjustflag='2') return rs.get_data()

2、数据划分

之后,定义预测长度以及需要获取的股票代码。然后将获取到的数据划分为训练集和测试集。这里prediction_length变量定义了预测长度,stock_list中选取了三支上海证券交易所中三支医疗板块的股票。之后,将得到的股票数据转换为GluonTS指定的输入数据格式ListDataset。其中,start表示预测起始值,target表示预测的目标变量,cat表示引入的静态变量,这里用到了股票的id,dynamic_feat表示其他的动态标量,这里引入了交易量跟换手率,它的长度需要跟target一致。

prediction_length = 20
stock_list = ['sh.600227', 'sh.600200', 'sh.600201']
train_dic_list = []
test_dic_list = []
lg = bs.login()for stock_id in stock_list:df = get_stockdata(stock_id)train_dic = {'start':df.date[0],'target':df.close,'cat':int(stock_id.split('.')[1]),'dynamic_feat':[df.volume, df.turn]}test_dic = {'start':df.date[0],'target':df.close[:-prediction_length],'cat':int(stock_id.split('.')[1]),'dynamic_feat':[df.volume[:-prediction_length], df.turn[:-prediction_length]]}train_dic_list.append(train_dic)test_dic_list.append(test_dic)bs.logout()

3、模型构造与训练

之后,需要构造DeepAR模型,并进行训练。其中,prediction_length:预测范围的长度;context_length表示在计算预测之前要为RNN展开的步骤数(默认context_length等于prediction_length);num_layers表示RNN层数;num_cells表示每层的RNN的神经元个数。

estimator = DeepAREstimator(prediction_length=prediction_length,context_length=60,freq='1d',num_layers=2,num_cells=64,trainer=Trainer(epochs=20,learning_rate=1e-2,num_batches_per_epoch=32)
)
predictor = estimator.train(train_data)

4、模型测试与可视化

首先,定义一个函数用于结果的可视化。

def plot_prob_forecasts(ts_entry, forecast_entry, path, sample_id):plot_length = 150prediction_intervals = (50, 80)legend = ['observations', 'median prediction'] + [f'{k}% prediction interval' for k in prediction_intervals][::-1]_, ax = plt.subplots(1, 1, figsize=(10, 7))ts_entry[-plot_length:].plot(ax=ax)forecast_entry.plot(prediction_intervals=prediction_intervals, color='g')ax.axvline(ts_entry.index[-prediction_length], color='r')plt.legend(legend, loc='upper left')plt.savefig('{}forecast_{}.png'.format(path, sample_id))plt.close()

之后调用模型评估的方法对训练好的模型进行评估,其中num_samples表示可视化数据的长度。最后,将plot的结果保存在本地。

forecast_it, ts_it = make_evaluation_predictions(dataset=test_data,predictor=predictor,num_samples=100
)tss = list(tqdm(ts_it, total=len(test_data)))
forecasts = list(tqdm(forecast_it, total=len(test_data)))plot_log_path = './plots/'
directory = os.path.dirname(plot_log_path)
if not os.path.exists(directory):os.makedirs(directory)for i in tqdm(range(len(stock_list))):ts_entry = tss[i]forecast_entry = forecasts[i]plot_prob_forecasts(ts_entry, forecast_entry, plot_log_path, i)

5、运行结果与分析

经过20个epoch的训练,可以看出模型的loss不断下降,实际应用中可以通过超参优化,warmup,early stop,dropout等一系列的操作来使得模型具有更好的训练效果,这里不再赘述。

100%|██████████| 32/32 [00:12<00:00,  2.63it/s, epoch=1/20, avg_epoch_loss=1.99]
100%|██████████| 32/32 [00:13<00:00,  2.34it/s, epoch=2/20, avg_epoch_loss=1.01]
100%|██████████| 32/32 [00:07<00:00,  4.49it/s, epoch=3/20, avg_epoch_loss=1.07]
100%|██████████| 32/32 [00:06<00:00,  4.61it/s, epoch=4/20, avg_epoch_loss=0.87]
100%|██████████| 32/32 [00:06<00:00,  4.63it/s, epoch=5/20, avg_epoch_loss=0.614]
100%|██████████| 32/32 [00:05<00:00,  5.40it/s, epoch=6/20, avg_epoch_loss=0.595]
100%|██████████| 32/32 [00:05<00:00,  6.18it/s, epoch=7/20, avg_epoch_loss=0.474]
100%|██████████| 32/32 [00:05<00:00,  5.82it/s, epoch=8/20, avg_epoch_loss=0.399]
100%|██████████| 32/32 [00:05<00:00,  5.85it/s, epoch=9/20, avg_epoch_loss=0.36]
100%|██████████| 32/32 [00:05<00:00,  5.58it/s, epoch=10/20, avg_epoch_loss=0.273]
100%|██████████| 32/32 [00:05<00:00,  5.78it/s, epoch=11/20, avg_epoch_loss=0.208]
100%|██████████| 32/32 [00:05<00:00,  5.83it/s, epoch=12/20, avg_epoch_loss=0.169]
100%|██████████| 32/32 [00:05<00:00,  6.04it/s, epoch=13/20, avg_epoch_loss=0.156]
100%|██████████| 32/32 [00:05<00:00,  6.04it/s, epoch=14/20, avg_epoch_loss=0.26]
100%|██████████| 32/32 [00:05<00:00,  5.98it/s, epoch=15/20, avg_epoch_loss=0.189]
100%|██████████| 32/32 [00:05<00:00,  5.69it/s, epoch=16/20, avg_epoch_loss=0.138]
100%|██████████| 32/32 [00:05<00:00,  5.62it/s, epoch=17/20, avg_epoch_loss=0.0314]
100%|██████████| 32/32 [00:05<00:00,  5.79it/s, epoch=18/20, avg_epoch_loss=-.033]
100%|██████████| 32/32 [00:05<00:00,  5.73it/s, epoch=19/20, avg_epoch_loss=0.0111]
100%|██████████| 32/32 [00:05<00:00,  5.67it/s, epoch=20/20, avg_epoch_loss=0.00313]

三只股票的预测结果可视化如下三张图所示,其中蓝色的线代表ground truth,绿色的线代表概率预测的中值,两个绿色区域则代表了80%跟50%的置信区间。从可视化的结果中也可以看出,随着时间的推移,模型预测结果的误差逐渐扩大,这也侧面说明了进行多步预测的难度之大。

a0ef924b29bf1554dfbdd5ac2a231a8c.png

2d93eaacbfea43735f75af76c0df994b.png

d6165c0db7e90e9e4283c40991c1351f.png

4

总结

本文简单介绍了DeepAR模型在股价多步预测方面的实现,并通过真实股票数据进行了实验验证。在深度学习预测应用方面中,目前主流的方法是利用RNN、LSTM等递归神经网络来进行预测,对于多步预测则同样是基于RNN模型的seq2seq架构,DeepAR模型也是如此,只不过DeepAR模型并不是简单地输出一个预测数值,而是输出预测值的一个概率分布,相比之下,这样做具有多方面的好处,输出一个概率分布则更加具有实际意义,或许还可以实现更高的预测精度。另外,在股价预测方面,通过给出预测值的概率分布,可以给出未来预测结果的不确定性以及相应的风险评估。本文内容仅仅是技术探讨和学习,并不构成任何投资建议。

参考文献:

Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, *36*(3), 1181-1191.

ef390bc2f1a5996724edc0b477088a80.png

《人工智能量化实验室》知识星球

c0898f8bdc879326450b9ea418094c88.png

加入人工智能量化实验室知识星球,您可以获得:(1)定期推送最新人工智能量化应用相关的研究成果,包括高水平期刊论文以及券商优质金融工程研究报告,便于您随时随地了解最新前沿知识;(2)公众号历史文章Python项目完整源码;(3)优质Python、机器学习、量化交易相关电子书PDF;(4)优质量化交易资料、项目代码分享;(5)跟星友一起交流,结交志同道合朋友。(6)向博主发起提问,答疑解惑。

e338f3671f7603545118f7597250febf.png

这篇关于【python量化】将DeepAR用于股票价格多步概率预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305560

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主