Lagrange插值公式matlab实现

2023-10-30 01:40

本文主要是介绍Lagrange插值公式matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、公式推导原理

N次插值基函数:

 满足插值多项式

 形如此公式的插值多项式称为Lagrang插值多项式。

由​​​​​​​的定义可知​​​​​​​

 若引入计号,再求导

因此 

二 、符号说明

输入:

xi:已知数据点的横坐标

k:函数lk(x)的下标k

xx:待插值点的横坐标

输出:lk_x,即函数lk(x)在xx坐标点的纵坐标

代码如下:

function lk_x = LagrangeFactor( xi, k, xx )
w = 1;
n = length( xi );
syms x;
for j = 1 : nw = w * ( x - xi(j) );
end
dw = diff( w );
dwf = matlabFunction( dw );
dwi = dwf( xi(k) );
lx = ( w / ( x - xi(k) ) ) / dwi;
f = matlabFunction( lx );
lk_x = f( xx );
end
  • 三、一次插值

1. 自变量函数的准备工作:

(xi,yi):是已知的数据点坐标代码:xi = [ 0, 1 ];
yi = sin( xi );
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(2) + 1 ];

2.根据lagrange插值多项式计算x坐标点处的函数值(纵坐标) 

代码:

for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(k) * lkx;end

3.绘图 

代码:

figure;
plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ -1, 2, -1, 3 ] )

结果如图:

 四、抛物插值

1.自变量函数的准备工作:

xi = [ 0, pi/2, pi ];
yi = [ 0, 1, 0 ];
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(n) + 1  ];

2.根据lagrange插值多项式计算x坐标点处的函数值

for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(i) * lkx;
end

3.绘图

plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ xi(1) - 1, xi(n) + 1, -1, 2 ] )

汇总代码:

clear all
clc
%% 一次插值
%(xi,yi):
xi = [ 0, 1 ];
yi = sin( xi );
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(2) + 1 ];
for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(k) * lkx;
end
%y
figure;
plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ -1, 2, -1, 3 ] )
%% 抛物插值
clear all
clc
xi = [ 0, pi/2, pi ];
yi = [ 0, 1, 0 ];
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(n) + 1  ];
for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(k) * lkx;
end
%y 
figure;
plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ xi(1) - 1, xi(n) + 1, -1, 2 ] )
function lk_x = LagrangeFactor( xi, k, xx )
w = 1;
n = length( xi );
syms x;
for j = 1 : nw = w * ( x - xi(j) );
end
dw = diff( w );
dwf = matlabFunction( dw );
dwi = dwf( xi(k) );
lx = ( w / ( x - xi(k) ) ) / dwi;
f = matlabFunction( lx );
lk_x = f( xx );
end

这篇关于Lagrange插值公式matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/304770

相关文章

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.