Lagrange插值公式matlab实现

2023-10-30 01:40

本文主要是介绍Lagrange插值公式matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、公式推导原理

N次插值基函数:

 满足插值多项式

 形如此公式的插值多项式称为Lagrang插值多项式。

由​​​​​​​的定义可知​​​​​​​

 若引入计号,再求导

因此 

二 、符号说明

输入:

xi:已知数据点的横坐标

k:函数lk(x)的下标k

xx:待插值点的横坐标

输出:lk_x,即函数lk(x)在xx坐标点的纵坐标

代码如下:

function lk_x = LagrangeFactor( xi, k, xx )
w = 1;
n = length( xi );
syms x;
for j = 1 : nw = w * ( x - xi(j) );
end
dw = diff( w );
dwf = matlabFunction( dw );
dwi = dwf( xi(k) );
lx = ( w / ( x - xi(k) ) ) / dwi;
f = matlabFunction( lx );
lk_x = f( xx );
end
  • 三、一次插值

1. 自变量函数的准备工作:

(xi,yi):是已知的数据点坐标代码:xi = [ 0, 1 ];
yi = sin( xi );
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(2) + 1 ];

2.根据lagrange插值多项式计算x坐标点处的函数值(纵坐标) 

代码:

for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(k) * lkx;end

3.绘图 

代码:

figure;
plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ -1, 2, -1, 3 ] )

结果如图:

 四、抛物插值

1.自变量函数的准备工作:

xi = [ 0, pi/2, pi ];
yi = [ 0, 1, 0 ];
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(n) + 1  ];

2.根据lagrange插值多项式计算x坐标点处的函数值

for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(i) * lkx;
end

3.绘图

plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ xi(1) - 1, xi(n) + 1, -1, 2 ] )

汇总代码:

clear all
clc
%% 一次插值
%(xi,yi):
xi = [ 0, 1 ];
yi = sin( xi );
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(2) + 1 ];
for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(k) * lkx;
end
%y
figure;
plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ -1, 2, -1, 3 ] )
%% 抛物插值
clear all
clc
xi = [ 0, pi/2, pi ];
yi = [ 0, 1, 0 ];
n = length( xi );
y = 0;
x = [ xi(1) - 1 : 0.1 : xi(n) + 1  ];
for k = 1 : nlkx = LagrangeFactor( xi, k, x );y = y + yi(k) * lkx;
end
%y 
figure;
plot( xi, yi, 'b.', 'markersize', 30 )
hold on
plot( x, sin(x), 'k--', 'LineWidth', 1.5  )
plot( x, y, 'r-', 'LineWidth', 2 )
legend( '插值点', '原曲线', '插值多项式曲线' );
axis( [ xi(1) - 1, xi(n) + 1, -1, 2 ] )
function lk_x = LagrangeFactor( xi, k, xx )
w = 1;
n = length( xi );
syms x;
for j = 1 : nw = w * ( x - xi(j) );
end
dw = diff( w );
dwf = matlabFunction( dw );
dwi = dwf( xi(k) );
lx = ( w / ( x - xi(k) ) ) / dwi;
f = matlabFunction( lx );
lk_x = f( xx );
end

这篇关于Lagrange插值公式matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/304770

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组