AcWing第 127 场周赛 - AcWing 5283. 牛棚入住+AcWing 5284. 构造矩阵 - 模拟+快速幂+数学

本文主要是介绍AcWing第 127 场周赛 - AcWing 5283. 牛棚入住+AcWing 5284. 构造矩阵 - 模拟+快速幂+数学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AcWing 5283. 牛棚入住

题目数据范围不大,直接暴力模拟即可
按照题目所说的意思即可。

#include <math.h>
#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 1e5 + 10;
#define de(x) cout << x << " ";
#define sf(x) scanf("%d", &x);
#define Pu puts("");
#define ll long long
int n, m, ans;
int a, b, c;  // 空的小栏,空的大栏,半空的大栏
int main() {cin >> n >> a >> b;c = 0;ans = 0;int x;while (n--) {cin >> x;// 按照题意进行简单模拟if (x == 1) {if (a > 0) {a--;} else if (b > 0) {b--;c++;} else if (c > 0) {c--;} else {ans++;}} else {if (b > 0) {b--;} else {ans += 2;}}}cout << ans << endl;return 0;
}

AcWing 5284. 构造矩阵

题解参考思路
上面的题解讲的很好

在这里插入图片描述
AC代码如下:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define sf(x) scanf("%d", &x);
#define de(x) cout << x << " ";
#define Pu puts("");
const int N = 1e5 + 9, mod = 1e9 + 7;
ll n, m, ans;  // 注意n和m数据范围是long long
int k;
ll qmi(ll x, ll y) {  // 快速幂ll res = 1;while (y) {if (y & 1)res = (ll)(res * x) % mod;x = (ll)(x * x) % mod;y >>= 1;}return res;
}
int main() {cin >> n >> m >> k;if ((n + m & 1) && k == -1)cout << 0 << endl;elsecout << qmi(qmi(2, n - 1), m - 1) << endl;return 0;
}

这篇关于AcWing第 127 场周赛 - AcWing 5283. 牛棚入住+AcWing 5284. 构造矩阵 - 模拟+快速幂+数学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/302182

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

usaco 1.2 Transformations(模拟)

我的做法就是一个一个情况枚举出来 注意计算公式: ( 变换后的矩阵记为C) 顺时针旋转90°:C[i] [j]=A[n-j-1] [i] (旋转180°和270° 可以多转几个九十度来推) 对称:C[i] [n-j-1]=A[i] [j] 代码有点长 。。。 /*ID: who jayLANG: C++TASK: transform*/#include<

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言