机器学习算法可有效发现艰难梭菌感染

2023-10-29 14:21

本文主要是介绍机器学习算法可有效发现艰难梭菌感染,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

美国麻省理工学院、哈佛大学医学院附属麻省总医院和密歇根大学的科研人员开发出了一种机器学习算法可有效发现艰难梭菌感染,相比传统方法可较早实现诊断。

每年都有近3万美国人死于一种名为艰难梭菌(Clostridium difficile)的侵袭性肠道感染细菌。这种细菌对许多常用抗生素具有抗药性,即使在能够杀死通常可控制住这种细菌的有益细菌的抗生素治疗中,这种细菌仍然能够繁殖。麻省理工学院(MIT)计算机科学与人工智能实验室(Computer Science and Artificial IntelligenceLaboratoryCSAIL)、麻省总医院(Massachusetts GeneralHospitalMGH)和密歇根大学(University of MichiganU-M)的科研人员现在已开发出研究型“机器学习”模型。这些模型专为各大机构量身定制,可比使用当前诊断方法更早地预测出患者感染艰难梭菌的可能性。

640?wx_fmt=png

“尽管在预防艰难梭菌感染和确诊后及早开始治疗方面投入了大量精力,感染率仍在继续上升,”麻省总医院感染内科医学博士、研究共同第一作者兼哈佛医学院(Harvard Medical School)医学助理教授埃丽卡·谢诺伊(EricaShenoy)说道。“我们需要更好的工具来帮助识别具有最高风险的患者,以便有针对性地进行预防和治疗干预,从而减少进一步传播并改善患者治疗效果。”

作者们指出,之前的大部分艰难梭菌感染风险模型都设计为“一刀切”方法,并且仅包含几个风险因素,因而用处有限。共同第一作者兼麻省理工学院计算机科学与人工智能实验室外科学硕士玛吉·马卡尔(Maggie Makar)和密歇根大学计算机科学与工程专业研究生杰雷尔·欧(Jeeheh Oh)及其同事采用“大数据”方法分析了完整的电子健康档案(Electronic Health RecordHER),以此预测患者在住院期间感染艰难梭菌的风险。他们的方法允许开发机构特定模型,可适应不同的患者人群、不同的电子健康档案系统和特定于各家机构的因素。

“如果仅将数据注入一刀切模型中,患者人群、医院布局、检验和治疗方案,甚或医务人员与电子健康档案之间交互方式的机构差异都可能会导致基础数据分布出现不同,并可能最终导致此类模型的表现差强人意,”密歇根大学计算机科学与工程助理教授兼研究共同第一作者詹娜·威恩斯(Jenna Wiens)博士说道。“为了缓和这些问题,我们采用医院特定方法,训练为每家机构量身定制的模型。”

科研人员借助其基于机器学习技术的模型,分别以两年和六年为期限,对在麻省总医院或密歇根大学医院(Michigan Medicine,密歇根大学学术医学中心)入院的257,000名患者的电子健康档案中去除了身份识别信息的数据进行分析。这些数据包括每名患者的人口统计数据和病史、其入院细节和每日住院情况,以及患者被艰难梭菌感染的可能性。该模型针对每名患者生成每日风险评分,当超过设定阈值时,患者会被归类为高风险患者。

整体而言,这些模型在预测最终会被诊断为感染了艰难梭菌的患者方面非常成功。在采集诊断样本前至少五天,这些模型就已经对其中半数感染患者进行了准确预测,这样一来,可集中对具有较高风险的患者进行靶向抗菌干预。如果在前瞻性研究中得到证实,风险预测评分可为艰难梭菌的早期筛查提供指导。对于在病程早期确诊的患者,启动治疗可抑制疾病严重程度加深,且确诊的艰难梭菌感染患者可得到隔离并能启动接触预防措施来防止感染向其他患者传播。

研究团队已在网上免费提供算法代码(https://gitlab.eecs.umich.edu/jeeheh/ICHE2018_CDIRiskPrediction),以供其他人查看及针对各自所在机构修改。谢诺伊指出,探索将类似算法应用于所在机构的医疗设施需要召集合适的本地主题专家并验证相关模型在其机构中的表现。

640?wx_fmt=jpeg

640?wx_fmt=jpeg



这篇关于机器学习算法可有效发现艰难梭菌感染的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301241

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

SpringCloud之consul服务注册与发现、配置管理、配置持久化方式

《SpringCloud之consul服务注册与发现、配置管理、配置持久化方式》:本文主要介绍SpringCloud之consul服务注册与发现、配置管理、配置持久化方式,具有很好的参考价值,希望... 目录前言一、consul是什么?二、安装运行consul三、使用1、服务发现2、配置管理四、数据持久化总

一文教你PyCharm如何有效地添加源与库

《一文教你PyCharm如何有效地添加源与库》在使用PyCharm进行Python开发的时候,很多时候我们需要添加库或者设置源,下面我们就来和大家详细介绍一下如何在PyCharm中添加源和库吧... 在使用PyCharm进行python开发的时候,很多时候我们需要添加库或者设置源。这些操作可以帮助我们更方便

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Linux虚拟机不显示IP地址的解决方法(亲测有效)

《Linux虚拟机不显示IP地址的解决方法(亲测有效)》本文主要介绍了通过VMware新装的Linux系统没有IP地址的解决方法,主要步骤包括:关闭虚拟机、打开VM虚拟网络编辑器、还原VMnet8或修... 目录前言步骤0.问题情况1.关闭虚拟机2.China编程打开VM虚拟网络编辑器3.1 方法一:点击还原VM

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.