机器学习算法可有效发现艰难梭菌感染

2023-10-29 14:21

本文主要是介绍机器学习算法可有效发现艰难梭菌感染,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

美国麻省理工学院、哈佛大学医学院附属麻省总医院和密歇根大学的科研人员开发出了一种机器学习算法可有效发现艰难梭菌感染,相比传统方法可较早实现诊断。

每年都有近3万美国人死于一种名为艰难梭菌(Clostridium difficile)的侵袭性肠道感染细菌。这种细菌对许多常用抗生素具有抗药性,即使在能够杀死通常可控制住这种细菌的有益细菌的抗生素治疗中,这种细菌仍然能够繁殖。麻省理工学院(MIT)计算机科学与人工智能实验室(Computer Science and Artificial IntelligenceLaboratoryCSAIL)、麻省总医院(Massachusetts GeneralHospitalMGH)和密歇根大学(University of MichiganU-M)的科研人员现在已开发出研究型“机器学习”模型。这些模型专为各大机构量身定制,可比使用当前诊断方法更早地预测出患者感染艰难梭菌的可能性。

640?wx_fmt=png

“尽管在预防艰难梭菌感染和确诊后及早开始治疗方面投入了大量精力,感染率仍在继续上升,”麻省总医院感染内科医学博士、研究共同第一作者兼哈佛医学院(Harvard Medical School)医学助理教授埃丽卡·谢诺伊(EricaShenoy)说道。“我们需要更好的工具来帮助识别具有最高风险的患者,以便有针对性地进行预防和治疗干预,从而减少进一步传播并改善患者治疗效果。”

作者们指出,之前的大部分艰难梭菌感染风险模型都设计为“一刀切”方法,并且仅包含几个风险因素,因而用处有限。共同第一作者兼麻省理工学院计算机科学与人工智能实验室外科学硕士玛吉·马卡尔(Maggie Makar)和密歇根大学计算机科学与工程专业研究生杰雷尔·欧(Jeeheh Oh)及其同事采用“大数据”方法分析了完整的电子健康档案(Electronic Health RecordHER),以此预测患者在住院期间感染艰难梭菌的风险。他们的方法允许开发机构特定模型,可适应不同的患者人群、不同的电子健康档案系统和特定于各家机构的因素。

“如果仅将数据注入一刀切模型中,患者人群、医院布局、检验和治疗方案,甚或医务人员与电子健康档案之间交互方式的机构差异都可能会导致基础数据分布出现不同,并可能最终导致此类模型的表现差强人意,”密歇根大学计算机科学与工程助理教授兼研究共同第一作者詹娜·威恩斯(Jenna Wiens)博士说道。“为了缓和这些问题,我们采用医院特定方法,训练为每家机构量身定制的模型。”

科研人员借助其基于机器学习技术的模型,分别以两年和六年为期限,对在麻省总医院或密歇根大学医院(Michigan Medicine,密歇根大学学术医学中心)入院的257,000名患者的电子健康档案中去除了身份识别信息的数据进行分析。这些数据包括每名患者的人口统计数据和病史、其入院细节和每日住院情况,以及患者被艰难梭菌感染的可能性。该模型针对每名患者生成每日风险评分,当超过设定阈值时,患者会被归类为高风险患者。

整体而言,这些模型在预测最终会被诊断为感染了艰难梭菌的患者方面非常成功。在采集诊断样本前至少五天,这些模型就已经对其中半数感染患者进行了准确预测,这样一来,可集中对具有较高风险的患者进行靶向抗菌干预。如果在前瞻性研究中得到证实,风险预测评分可为艰难梭菌的早期筛查提供指导。对于在病程早期确诊的患者,启动治疗可抑制疾病严重程度加深,且确诊的艰难梭菌感染患者可得到隔离并能启动接触预防措施来防止感染向其他患者传播。

研究团队已在网上免费提供算法代码(https://gitlab.eecs.umich.edu/jeeheh/ICHE2018_CDIRiskPrediction),以供其他人查看及针对各自所在机构修改。谢诺伊指出,探索将类似算法应用于所在机构的医疗设施需要召集合适的本地主题专家并验证相关模型在其机构中的表现。

640?wx_fmt=jpeg

640?wx_fmt=jpeg



这篇关于机器学习算法可有效发现艰难梭菌感染的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301241

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

三国地理揭秘:为何北伐之路如此艰难,为何诸葛亮无法攻克陇右小城?

俗话说:天时不如地利,不是随便说说,诸葛亮六出祁山,连关中陇右的几座小城都攻不下来,行军山高路险,无法携带和建造攻城器械,是最难的,所以在汉中,无论从哪一方进攻,防守方都是一夫当关,万夫莫开;再加上千里运粮,根本不需要打,司马懿只需要坚守城池拼消耗就能不战而屈人之兵。 另一边,洛阳的虎牢关,一旦突破,洛阳就无险可守,这样的进军路线,才是顺势而为的用兵之道。 读历史的时候我们常常看到某一方势