PyTorch视频理解利器!数行代码训练视频模型

2023-10-29 13:40

本文主要是介绍PyTorch视频理解利器!数行代码训练视频模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“机器学习与生成对抗网络”,关注星标

获取有趣、好玩的前沿干货!

Facebook人工智能实验室在 PySlowFast 之后时隔两年,携 PyTorchVideo 重入战场。

文章来源  机器之心 编辑部

视频作为当今最被广为使用的媒体形式,已逐渐占超过文字和图片,据了人们更多的浏览时间。这使得视频理解变得尤为重要。各大互联网公司与顶尖高校纷纷绞尽脑汁,竞相研究前沿视频理解模型与算法。在谷歌,Facebook,亚麻,Open-MM Lab 等分别祭出各家杀器之后,Facebook人工智能实验室在 PySlowFast 之后时隔两年,携 PyTorchVideo 重入战场。

官方网站:https://pytorchvideo.org/

PyTorchVideo 好像哪儿都能用

不同于在座的各位视频代码理解框架只醉心于自家框架,无法移步与其他代码库。PyTorchVideo 似乎如同 torchvision 等基础代码库一般,“哪儿都能用”!PyTorchVideo 不但可以用在视频理解任务中,甚至可以用在其他任务的代码库。Facebook人工实验室不但 PySlowFast 代码库上无缝使用上了 PyTorchVideo,并且还在 Classy Vision,PyTorch Lightening 等等框架上无缝插入。

作为含着金钥匙出生的 PyTorchVideo,其直接成为了 PyTorch Lightning-Flash 的视频理解担当,作为基础库被默认使用。如,在 FiftyOne 项目中,开源社区的吃瓜群众就利 Lightning-Flash 鬼畜出了一个浏览视频的工具箱,可以直接查看视频的动作类别。

PyTorchVideo 好像啥都管

更厉害的是,PyTorchVideo 似乎“啥都管”!不但在视频分类,动作检测等任务中深耕前沿,还“略懂”Lecun 最爱的自监督学习,甚至音频事件检测等等千奇百怪的任务也不在话下。

PyTorchVideo 好像手机也能玩

更丧心病狂的是,PyTorchVideo 一并开源了移动端的加速优化。不但提供了手把手的教程,将视频模型一步步优化核心 Kernel,量化(quantilize)加速,数倍加速后在移动端实时运行,甚至官方直接暴力放出 Android 和 iOS 移动端开源代码,将前沿的视频模型直接塞到手机里跑着玩玩。

PyTorchVideo 到底是个啥

PyTorchVideo 的真身是一个基础视频库,可以服务于各种代码库。除了全方位的前沿视频模型模型,开源视频模型,其中还含有各类视频基础算法,视频数据操作,各类流行视频数据集,视频增广,视频模型加速量化,等等一些列的全栈视频相关内容。据官方博客透露,PyTorchVideo 开源了一大票视频模型,包括Facebook人工智能实验室近期出现在 ICCV,ICML 等回忆中的工作:

●Multiscale Vision Transformers

●A large-scale study on unsupervised spatiotemporal representation learning

●Multiview pseudo-labeling for semi-supervised learning from video

●Is space-time attention all you need for video understanding?

●Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers

●SlowFast networks for video recognition

●X3D: Expanding architectures for efficient video recognition

●Audiovisual SlowFast networks for video recognition

●Non-local neural networks

●A closer look at spatiotemporal

● convolutions for action recognition

●Video classification with channel-separated convolutional networks

似乎其 MultiScale Vision Transform 也位列其中,有兴趣的朋友可以去一探究竟。

PyTorchVideo 怎么玩

浏览一下官方的教程并上手实验一下,发现通过 PyTorchVideo 只需要寥寥几行就可以训练一个视频模型:

开发者们也可从开源的训练模型库中直接使用模型。

Kinetics-400

Something-Something V2

Charades

AVA (V2.2)

甚至通过 PyTorchVideo 加持的 Lightning Flash,分类视频仅仅只需三行。

参考链接:

https://pytorchvideo.org/

https://ai.facebook.com/blog/pytorchvideo-a-deep-learning-library-for-video-understanding/

猜您喜欢:

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

这篇关于PyTorch视频理解利器!数行代码训练视频模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301019

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}