OpenVINO 2021r2 C++ 超分辨率重建 Waifu2x

2023-10-29 13:38

本文主要是介绍OpenVINO 2021r2 C++ 超分辨率重建 Waifu2x,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最后试一下waifu2x, 因为我一直都喜欢waifu2x, 觉得他们家的超分算法在动画图像上的效果真的很惊艳,很久以前体验过windows版本,那时候机器又破,还用的是电脑上的caffe框架,超分个图片慢如老牛拉车。现在正好试试OpenVINO能不能加个速。

 

先从 https://github.com/lltcggie/waifu2x-caffe/releases/tag/1.2.0.4  下载一个release包 waifu2x-caffe.zip

所有的模型放在models目录下,这里用了upconv_7_photo目录下的noise0_scale2.0x_model这个模型来做测试。

 

运行mo.py

C:\temp\waifu2x-caffe\models\upconv_7_photo>python "c:\Program Files (x86)\IntelSWTools\openvino_2021\deployment_tools\model_optimizer\mo_caffe.py" --input_model=noise0_scale2.0x_model.json.caffemodel --input_proto=noise0_scale2.0x_model.prototxt --input=input --output=conv7_layer --input_shape=[1,3,480,640] --scale_values=[255.0] --data_type FP16

转换时得到一个错误

[ ERROR ]  Exception occurred during running replacer "REPLACEMENT_ID" (<class 'extensions.load.caffe.loader.CaffeLoader'>): Unexpected exception happened during extracting attributes for node target.
Original exception message: Found custom layer "target". Model Optimizer does not support this layer. Please, implement extension.For more information please refer to Model Optimizer FAQ, question #45. (https://docs.openvinotoolkit.org/latest/openvino_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html?question=45#question-45)

说是有个custom layer "target" , Model Optimizer不支持。

 

用Netron神器看看noise0_scale2.0x_model.prototxt的网络架构

Target层的Type是MemoryData

 

再看下noise0_scale2.0x_model.prototxt文件内容, MemoryData和EucideanLoss层都是给Training用的, 只做推理的话应该用不到,所以可以删掉

...
layer {name: "target"type: "MemoryData"top: "target"top: "dummy_label2"memory_data_param {batch_size: 1channels: 3height: 142width: 142}include: { phase: TRAIN }
}
layer {name: "loss"type: "EuclideanLoss"bottom: "conv7"bottom: "target"top: "loss"include: { phase: TRAIN }
}

对应的再删掉noise0_scale2.0x_model.prototxt.protobin里面对应的红框部分

 

再运行mo.py, 成功了 :)

运行结果:

原始图片(测试图片来自网络)

Bicubic的2x放大效果

Waifu2x 2X放大的效果

感觉waifu2x超分的图像里文字边缘锐利多了  赞 :)

 

性能,

调用inferRequest_regular.Infer()推理的时间, 在8665U 4核8线程的CPU和 Gen9 24EU的核显上

  • CPU: 1341ms (0.746FPS)
  • GPU: 685ms (1.46FPS)

感觉比原版的windows程序快多了

 

最后参考代码奉上,仅供参考

https://gitee.com/tisandman/waifu2x_ov2021

 

 

这篇关于OpenVINO 2021r2 C++ 超分辨率重建 Waifu2x的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301003

相关文章

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决