[OpenGL] 使用折射与反射的玻璃球

2023-10-29 12:40

本文主要是介绍[OpenGL] 使用折射与反射的玻璃球,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

        本次demo绘制了一个球体,包含了反射以及折射效果,两者通过菲涅尔公式进行混合。这篇文章主要是记录一下个人的实现细节,有一些细节的实现步骤还不是非常确定,还在查证中,所以此篇仅供参考。上面两图中折射取值不同。

        框架:Qt 5.11, OpenGL ES 2.0

球体绘制

        首先,为了更好的表现效果,此demo需要绘制一个球体。如果使用了glut框架,有现成的球体绘制函数,但是在原生的Qt中没有找到类似的函数,所以先花了时间做了球体绘制的计算。

        本次计算使用了vertex buffer和index buffer。

        首先计算所有顶点。外层循环是从最高点沿着纬度变化的,左图的圆圈为沿着大球半径的纵切面,每次循环对应着一个a角,可由此计算出球的y坐标,即y = cos(a); 内层循环沿着经度变化的,右图的圆圈是沿着外层循环纬度处的横切面,它的半径可由a角求出,即 r = sin(a) ; 之后,可以对应求出该点处的x,z坐标分别为x = r * sin(b), z = r * cos(b)。

        之后开始逐三角形记录顶点索引。

       取上图的一个面片,求出对应的两个三角形,需要特别注意顺序要按照右手定则来取(四指沿着图中箭头走向,大拇指为法线方向),否则法线以及背面消隐都会是错误的。


struct VertexData2
{QVector3D position;QVector3D normal;int adjoinPlane = 0;
};void GeometryEngine::initSphereGeometry()
{const int latitude = 40;const int longtitude = 40;const float PI = 3.14159f;QVector<VertexData2> Vertices;for(int i = 0;i <= latitude;i++) // 纬度{float y = cos(i * PI / latitude);for(int j = 0;j < longtitude; j++) // 经度{VertexData2 vertex;float x = sin(i * PI / latitude) * sin(2 * j * PI / longtitude);float z = sin(i * PI / latitude) * cos(2 * j * PI / longtitude);vertex.position = QVector3D(x,y,z);Vertices.push_back(vertex);}}QVector<GLushort> Indices;for(int i = 0;i < latitude;i++) // 纬度{for(int j = 0;j < longtitude; j++) // 经度{GLushort p1 = longtitude * i + j;GLushort p2 = longtitude * (i + 1) + j;GLushort p3 = longtitude * (i + 1) + j + 1;GLushort p4 = longtitude * i + j + 1;p1 = p1 % Vertices.size();p2 = p2 % Vertices.size();p3 = p3 % Vertices.size();p4 = p4 % Vertices.size();Indices.push_back(p4);Indices.push_back(p1);Indices.push_back(p2);Indices.push_back(p4);Indices.push_back(p2);Indices.push_back(p3);}}for(int i=0;i<Indices.size()/3;i++){CalNormal(Vertices[Indices[3 * i]],Vertices[Indices[3 * i + 1]],Vertices[Indices[3 * i + 2]]);}sphereArrayBuf.bind();sphereArrayBuf.allocate(Vertices.data(), Vertices.size() * sizeof(VertexData2));sphereIndexBuf.bind();sphereIndexBuf.allocate(Indices.data(), Indices.size() * sizeof(GLushort));
}void GeometryEngine::CalNormal(VertexData2& vertex0, VertexData2& vertex1, VertexData2& vertex2)
{QVector3D e0 = vertex1.position - vertex0.position;QVector3D e1 = vertex2.position - vertex0.position;QVector3D normal;normal = QVector3D::crossProduct(e0, e1);normal.normalize();QVector<VertexData2*> vertexArr = { &vertex0, &vertex1, &vertex2};for(int i = 0;i < vertexArr.size();i++){vertexArr[i]->adjoinPlane++;float ratio = 1.0f / vertexArr[i]->adjoinPlane;vertexArr[i]->normal = vertexArr[i]->normal * (1 - ratio) + normal * ratio;vertexArr[i]->normal.normalize();}
}

立方体贴图(CubeMap)

        为了能够让球体反射/折射环境,我们需要提供这样一个环境贴图。为了达到这一目的,我们可以使用OpenGL提供的立方体贴图。简单来说,立方体六个面上有着贴图,根据输入的向量,如下图方式发出该射线得到与立方体的交点,从而采样得到像素。

        

        和普通纹理一样,我们首先需要生成这个纹理,区别是类型从GL_TEXTURE_2D变成了GL_TEXTURE_CUBE_MAP

    glGenTextures(1, &m_nTextureId);glBindTexture(GL_TEXTURE_CUBE_MAP, m_nTextureId);

        之后,我们按照右,左,顶,底,后 ,前的顺序准备六张贴图,调用glTexImage2D来指定cubemap的纹理,由于GL_TEXTURE_CUBE_MAP_POSITIVE_X以及之后的值是连续存储的,所以可以写成一个for循环。

        由于QImage读出的数据是bgra格式,所以需要对数据做一点特殊处理,转换为rgb格式。

    QString path[] ={":/right.jpg",":/left.jpg",":/top.jpg",":/bottom.jpg",":/back.jpg",":/front.jpg",};for(int i = 0;i < 6;i++){QImage image(path[i]);const int count = image.byteCount() / 4 * 3;unsigned char* data = new unsigned char[count];int cnt = 0;for(int j = 0;j < count / 3; j++){data[3 * j] = image.bits()[cnt + 2];data[3 * j + 1] = image.bits()[cnt + 1];data[3 * j + 2] = image.bits()[cnt];cnt += 4;}glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,0,GL_RGB,image.width(),image.height(),0,GL_RGB,GL_UNSIGNED_BYTE,data);delete[] data;}

       最后,也和普通纹理类似,需要指定纹理环绕(采样坐标不在0~1之间)以及minmag(映射最终大小和原大小不一样)方式。

    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_REPEAT);glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_REPEAT);glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_REPEAT);glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

反射效果

        

        反射效果的只需要通过反射向量来采样立方体即可,在高光的计算中已经使用了反射向量,需要输入的是视线和法线位置。glsl已经有了内置的反射计算函数:

vec3 N = normalize(v_normal);
vec3 I = normalize(worldPos - cameraPos);
vec3 R = reflect(I, N);
vec4 reflectedColor = textureCube(cubemap, R);

折射效果

        

         关于折射,使用折射参数0.66之后成像在球体里是反的,随着相机参数(改的是相机距离视点的位置参数)以及折射参数改变,图像可能变正,玻璃球本身有这么一个透镜的倒立成像属性,但是我不能确定是写错了还是事实如此,查了挺久资料~如果有人清楚求科普!

         

       该图来自网络的摄影作品。

       同样,类似于反射,折射是通过折射向量来采样立方体纹理的,glsl也为折射提供了内置函数。

    vec3 N = normalize(v_normal);vec3 I = normalize(worldPos - cameraPos);vec3 T = refract(I, N, 0.66);vec4 refractedColor = textureCube(cubemap, T);

菲涅尔效应

        菲涅尔效应的直观表现就是,视线与表面法线越垂直,反射越弱,反之则越明显。

        对于球体而言,中间部分以折射为主,看到的是对面的景象,有一种透明的效果;边缘部分以反射为主。下图中菲涅尔效应更为明显。

        近似的计算公式: fresnel = base + scale * pow(1.0 - dot(I,N), indensity);

        Refraction 1

Qt内置的一个玻璃效果的着色器

        

        Qt的官方样例中,自带了一个玻璃的材质,思路同样也是折射 + 反射 + 菲涅尔效应混合。折射和反射是直接求解得到的,没有使用内置函数。不过大部分计算是在相机空间中完成的,之后再转到了世界空间。

varying vec3 position, normal;
varying vec4 specular, ambient, diffuse, lightDirection;uniform sampler2D tex;
uniform samplerCube env;
uniform mat4 view;// Some arbitrary values
// Arrays don't work here on glsl < 120, apparently.
//const float coeffs[6] = float[6](1.0/4.0, 1.0/4.1, 1.0/4.2, 1.0/4.3, 1.0/4.4, 1.0/4.5);
float coeffs(int i)
{return 1.0 / (3.0 + 0.1 * float(i));
}void main()
{vec3 N = normalize(normal);vec3 I = -normalize(position);mat3 V = mat3(view[0].xyz, view[1].xyz, view[2].xyz);float IdotN = dot(I, N);float scales[6];vec3 C[6];for (int i = 0; i < 6; ++i) {scales[i] = (IdotN - sqrt(1.0 - coeffs(i) + coeffs(i) * (IdotN * IdotN)));C[i] = textureCube(env, (-I + coeffs(i) * N) * V).xyz;}vec4 refractedColor = 0.25 * vec4(C[5].x + 2.0*C[0].x + C[1].x, C[1].y + 2.0*C[2].y + C[3].y,C[3].z + 2.0*C[4].z + C[5].z, 4.0);vec3 R = 2.0 * dot(-position, N) * N + position;vec4 reflectedColor = textureCube(env, R * V);gl_FragColor = mix(refractedColor, reflectedColor, 0.4 + 0.6 * pow(1.0 - IdotN, 2.0));
}

附录

vertex shader

#ifdef GL_ES
// Set default precision to medium
precision mediump int;
precision mediump float;
#endifuniform mat4 ModelMatrix;
uniform mat4 IT_ModelMatrix;
uniform mat4 ViewMatrix;
uniform mat4 ProjectMatrix;attribute vec4 a_position;
attribute vec3 a_normal;
attribute vec2 a_texcoord;varying vec2 v_texcoord;
varying vec3 v_normal;
varying vec3 worldPos;void main()
{gl_Position = ModelMatrix * a_position;worldPos = vec3(gl_Position);gl_Position = ViewMatrix * gl_Position;gl_Position = ProjectMatrix * gl_Position;v_texcoord = a_texcoord;mat3 M = mat3(IT_ModelMatrix[0].xyz, IT_ModelMatrix[1].xyz, IT_ModelMatrix[2].xyz);v_normal = M * a_normal;
}

fragment shader

#ifdef GL_ES
// Set default precision to medium
precision mediump int;
precision mediump float;
#endif
uniform samplerCube cubemap;
uniform mat4 ViewMatrix;
uniform int type;uniform vec3 cameraPos;
varying vec3 worldPos;
varying vec3 v_normal;float saturate(float data)
{if(data < 0.0){return 0.0;}else if(data > 1.0){return 1.0;}return data;
}void main()
{vec3 N = normalize(v_normal);vec3 I = normalize(worldPos - cameraPos);vec3 R = reflect(I, N);vec4 reflectedColor = textureCube(cubemap, R);vec3 T = refract(I, N, 0.66);vec4 refractedColor = textureCube(cubemap, T);if(type == 0){gl_FragColor = reflectedColor;}else if(type == 1){gl_FragColor = refractedColor;}else if(type == 2){float fresnel = 0.4 + 0.6 * pow(min(0.0, 1.0 - dot(-I, N)), 4.0);gl_FragColor = mix(refractedColor, reflectedColor, fresnel);}}

 

这篇关于[OpenGL] 使用折射与反射的玻璃球的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300714

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详