基于.NET的大型Web站点StackOverflow架构分析(转)

2023-10-29 11:18

本文主要是介绍基于.NET的大型Web站点StackOverflow架构分析(转),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Stack Overflow网址:http://stackoverflow.com/

当前访问量:每月9500PV(每天300多万PV)

当前Alexa排名:149

所用.NET技术:C#、Visual Studio 2010 Team Suite、ASP.NET 4、ASP.NET MVC 3、Razor、LINQ to SQL+raw SQL

下面是英文原文:

A lot has happened since my first article on the Stack Overflow Architecture(2009-8-5). Contrary to the theme of that last article, which lavished attention on Stack Overflow's dedication to a scale-up strategy, Stack Overflow has both grown up and out in the last few years.

自从2009年8月发布了第一篇关于“Stack Overflow 架构”方面的文章,Stack Overflow已经发生了很大的变化。那篇文章更多关注的是Stack Overflow如何解决网站的扩展性(scale-up)问题,而经过几年的发展,Stack Overflow已经长大成人,成长为了大型网站。

Stack Overflow has grown up by more then doubling in size to over 16 million users and multiplying its number of page views nearly 6 times to 95 million page views a month.  

现在与2009年相比,Stack Overflow每月独立访问用户翻了一倍,超过1600万;每月PV翻了近6倍,达到9500万。

Stack Overflow has grown out by expanding into the Stack Exchange Network, which includes Stack Overflow, Server Fault, and Super User for a grand total of 43 different sites. That's a lot of fruitful multiplying going on.

Stack Overflow新增了很多站点,比如Server Fault, Super User等,共有43个不同站点组成了Stack Exchange Network,可谓硕果累累,迅猛增长。

What hasn't changed is Stack Overflow's openness about what they are doing. And that's what prompted this update. A recent series of posts talks a lot about how they've been handling their growth: Stack Exchange’s Architecture in Bullet Points, Stack Overflow’s New York Data Center, Designing For Scalability of Management and Fault Tolerance, Stack Overflow Search — Now 81% Less, Stack Overflow Network Configuration, Does StackOverflow use caching and if so, how?, Which tools and technologies build the Stack Exchange Network?.

Stack Overflow的变化翻天覆地,而不变的是他们开放的心态,所以才有了这篇架构分享的文章。最近,他们写了一系列文章分享他们如何应对这样的快速增长。

Some of the more obvious differences across time are:
穿越时空,我们来看看有哪 些明显的变化?

  • Just More. More users, more page views, more datacenters, more sites, more developers, more operating systems, more databases, more machines. Just a lot more of more.
    更多:更多的用户,更多的PV,更多的数据中心,更多的站点,更多的开发者,更多 的操作系统,更多的数据库,更多的服务器...
  • Linux. Stack Overflow was known for their Windows stack, now they are using a lot more Linux machines for HAProxy, Redis, Bacula, Nagios, logs, and routers. All support functions seem to be handled by Linux, which has required the development of parallel release processes.
    Linux:Stack Overflow因使用Windows系统而著称,现在他们使用越来越多的Linux服务器,比如HAProxy(负载均衡), Redis(NoSQL数据库), Bacula(数据备份系统), Nagios(远程监控软件), 日志, 路由器都运行于Linux系统,几乎所有需要并行处理的功能都是由Linux处理(这句话的翻译可能不准确)。
  • Fault Tolerance. Stack Overflow is now being served by two different switches on two different internet connections, they've added redundant machines, and some functions have moved to a second datacenter.
    容错:Stack Overflow使用了两条不同的互联网线路,增加了更多的冗余服务器,将一些网站服务运行于第二个数据中心。
  • NoSQL. Redis is now used as a caching layer for the entire network. There wasn't a separate caching tier before so this a big change, as is using a NoSQL database on Linux.
    NoSQL:Redis 作为整个网站的缓存层。这是一个巨大的改变,以前并没有将缓存作为一个独立的层分离出来。Redis运行于Linux。

Unfortunately, I couldn't find any coverage on some of the open questions I had last time, like how they were going to deal with multi-tenancy across so many diffrent properties, but there's still plenty to learn from. Here's a roll up a few different sources:

遗憾的是,一些我关注的问题并没有从中找到答案,比如面对这么多不同的系统,如何解决多租户的问题(Multi-tenancy 是一种软件体系结构,在这种体系结构中软件运行在 software as a service 服务商的服务器上,服务于多个客户组织即 tenant)。但是,从中我们依然可以学到很多。下面是收集的一些数据列表:

The Stats

  • 95 Million Page Views a Month
  • 800 HTTP requests a second
  • 180 DNS requests a second
  • 55 Megabits per second
  • 16 Million Users  - Traffic to Stack Overflow grew 131% in 2010, to 16.6 million global monthly uniques. 

Data Centers

  • 1 Rack with Peak Internet in OR (Hosts our chat and Data Explorer)
  • 2 Racks with Peer 1 in NY (Hosts the rest of the Stack Exchange Network)

Hardware

  • 10 Dell R610 IIS web servers (3 dedicated to Stack Overflow):
    • 1x Intel Xeon Processor E5640 @ 2.66 GHz Quad Core with 8 threads
    • 16 GB RAM
    • Windows Server 2008 R2
  • 2 Dell R710 database servers:
    • 2x Intel Xeon Processor X5680 @ 3.33 GHz
    • 64 GB RAM
    • 8 spindles
    • SQL Server 2008 R2
  • 2 Dell R610 HAProxy servers:
    • 1x Intel Xeon Processor E5640 @ 2.66 GHz
    • 4 GB RAM
    • Ubuntu Server
  • 2 Dell R610 Redis servers:
    • 2x Intel Xeon Processor E5640 @ 2.66 GHz
    • 16 GB RAM
    • CentOS
  • 1 Dell R610 Linux backup server running Bacula:
    • 1x Intel Xeon Processor E5640 @ 2.66 GHz
    • 32 GB RAM
  • 1 Dell R610 Linux management server for Nagios and logs:
    • 1x Intel Xeon Processor E5640 @ 2.66 GHz
    • 32 GB RAM
  • 2 Dell R610 VMWare ESXi domain controllers:
    • 1x Intel Xeon Processor E5640 @ 2.66 GHz
    • 16 GB RAM
  • 2 Linux routers
  • 5 Dell Power Connect switches

Dev Tools

  • C#: Language
  • Visual Studio 2010 Team SuiteIDE
  • Microsoft ASP.NET (version 4.0)Framework
  • ASP.NET MVC 3Web Framework
  • RazorView Engine
  • jQuery 1.4.2Browser Framework:
  • LINQ to SQL, some raw SQLData Access Layer
  • Mercurial and KilnSource Control(分布式版本控制系统)
  • Beyond Compare 3: Compare Tool(文件比较工具)

Software and Technologies Used

  • Stack Overflow uses a WISC stack via BizSpark
  • Windows Server 2008 R2 x64: Operating System
  • SQL Server 2008 R2 running Microsoft Windows Server 2008 Enterprise Edition x64: Database
  • Ubuntu Server
  • CentOS
  • IIS 7.0: Web Server
  • HAProxy: for load balancing(高性能的负载TCP/HTTP均衡器)
  • Redis: used as the distributed caching layer.(作为分布式缓存层的NoSQL数据库)
  • CruiseControl.NET: for builds and automated deployment(.NET平台的持续集成工具)
  • Lucene.NET:  for search
  • Bacula: for backups(开源的数据备份系统)
  • Nagios: (with n2rrd and drraw plugins) for monitoring(监视系统运行状态和网络信息的远程监控软件)
  • Splunk: for logs(日志分析工具)
  • SQL Monitor: from Red Gate - for SQL Server monitoring
  • Bind: for DNS
  • Rovio:  a little robot (a real robot) allowing remote developers to visit the office “virtually.”
  • Pingdom:  an external monitor and alert service.(网站监控服务及网站速度测试工具)

External Bits

Code that is not included as part of the development tools:

  • reCAPTCHA(用 于验证码验证,已被Google收购)
  • DotNetOpenId(.NET 平台上的 OpenID 实现方案)
  • WMD - Now developed as open source. See github network graph (轻量级所见即所得编辑器)
  • Prettify(代码高亮显示)
  • Google Analytics
  • Cruise Control .NET
  • HAProxy(负载均衡)
  • Cacti(网络流量监测图形分析 工具)
  • MarkdownSharp(Markdown 文本处理器的C#实现)
  • Flot(基于 JQuery的纯JavaScript实现的绘图库)
  • Nginx(反向代理服务器)
  • Kiln(分布式版本控制系统)
  • CDN: none, all static content is served off the sstatic.net, which is a fast, cookieless domain intended for static content delivered to the Stack Exchange family of websites.
    (没有使用CDN,用一个专门的域名sstatic.net传递所有的静态内容)

Developers and System Administrators

  • 14 Developers
  • 2 System Administrators

Content

  • License: Creative Commons Attribution-Share Alike 2.5 Generic
  • Standards: OpenSearch, Atom
  • Host: PEAK Internet

More Architecture and Lessons Learned

  • HAProxy is used instead of Windows NLB because HAProxy is cheap, easy, free, works great as a 512MB VM “device” on a network via Hyper-V. It also works in front of the boxes so it’s completely transparent to them, and easier to troubleshoot as a different networking layer instead of being intermixed with all your windows configuration.
    用HAProxy取代了 Windows NLB,HAProxy成本更低,更易于使用,通过Hyper-V可以很好地运行于512M内存的虚拟机。它工作于服务器群的最前端,对所有的服务器都透 明。相比于原来混杂在一起的Windows配置,它运行于一个独立的网络层,更易于维护与故障处理。
  • A CDN is not used because even “cheap” CDNs like Amazon one are very expensive relative to the bandwidth they get bundled into their existing host’s plan. The least they could pay is $1k/month based on Amazon’s CDN rates and their bandwidth usage.
    没有使用CDN,即使使用像Amazon那样与主 机空间捆绑在一起的看起来“便宜”的CDN,实际的费用也是很高的,至少需要1000美元/月。
  • Backup is to disk for fast retrieval and to tape for historical archiving.
    备份方案有两种,一种用于快速恢复的磁盘备份,一种用于历史数据存档的磁带备份。
  • Full Text Search in SQL Server is very badly integrated, buggy, deeply incompetent, so they went to Lucene.
    SQL Server的全文索引是非常差劲的,所以他们用Lucene.NET。
  • Mostly interested in peak HTTP request figures as this is what they need to make sure they can handle.
    让人很感兴趣的是他们如何处理访问高峰时的HTTP请求。
  • All properties now run on the same Stack Exchange platform. That means Stack Overflow, Super User, Server Fault, Meta, WebApps, and Meta Web Apps are all running on the same software.
    所有这些都运行于Stack Exchange平台,那意味着Stack Overflow, Super User, Server Fault, Meta, WebApps, 和Meta Web Apps都运行于同一个软件。
  • There are separate StackExchange sites because people have different sets of expertise that shouldn't cross over to different topic sites. You can be the greatest chef in the world, but that doesn't qualify you for fixing a server.
    也有一些独立运行的StackExchange站点,服务于那些具有多个专业技能,又不想为了不同的 话题在多个站点之间奔波的人。如果你能成为最伟大的主厨,不能因为给你安排了服务员的工作,你就安于现状。
  • They aggressively cache everything.
    他们疯狂地使用缓存。
  • All pages accessed by (and subsequently served to) annonymous users are cached via Output Caching.
    未登录用户访问的所有页面都通过Output Caching进行缓存。
  • Each site has 3 distinct caches: local, site, global.
    每个站点使用三种类型 的缓存:本地、站点、全局。
  • local cache: can only be accessed from 1 server/site pair 
    本地缓存:只能被当前站点的当前服务器访问。
    • To limit network latency they use a local "L1" cache, basically HttpRuntime.Cache, of recently set/read values on a server. This would reduce the cache lookup overhead to 0 bytes on the network.
      为了减少网络延时, 通常使用HttpRuntime.Cache作为一级缓存,这样可以避免通过网络在缓存服务器上查找的开销。
    • Contains things like user sessions, and pending view count updates.
      缓 存内容包含用户会话,视图数的更新。
    • This resides purely in memory, no network or DB access.
      直接缓存在内存中。
  • site cache:  can be accessed by any instance (on any server) of a single site
    站点级缓存:能被同一个站点的所有服务器访问。
    • Most cached values go here, things like hot question id lists and user acceptance rates are good examples
      大部分的缓存都在这一级,比如热点问题ID列表,用户支持率。
    • This resides in Redis (in a distinct DB, purely for easier debugging)
      缓存数据存储在Redis数据库中。
    • Redis is so fast that the slowest part of a cache lookup is the time spent reading and writing bytes to the network.
      Redis速度很快,缓存查找的开销主要在 网络传输上。
    • Values are compressed before sending them to Redis. They have plenty of CPU and most of their data are strings so they get a great compression ratio.
      缓存数据发送至Redis之前会被压缩。为什么要压缩呢?因为CPU资源绰绰有余,而且大部分缓存数据是字 符串,压缩率会很高,何乐而不为呢。
    • The CPU usage on their Redis machines is 0%.
      Redis服务器上的CPU使用率是0%。
  • global cache: which is shared amongst all sites and servers
    全局缓存:被所有站点和服务器共享。
    • Inboxes, API usage quotas, and a few other truly global things live here
      缓存内容包含收件箱,API使用限额,一些全局设置等。
    • This resides in Redis (in DB 0, likewise for easier debugging)
      缓存 于Redis数据库中。
  • Most items in the cache expire after a timeout period (a few minutes usually) and are never explicitly removed. When a specific cache invalidation is required they use Redis messaging to publish removal notices to the "L1" caches.
    大部分缓存项目在 超过缓存时间之后会自动过期(通常几分钟),不需要进行删除操作。当需要让一个特定的缓存失效,会通过Redis消息系统给一级缓存发送删除通知。
  • Joel Spolsky is not a Microsoft Loyalist, he doesn't make the technical decisions for Stack Overflow, and considers Microsoft licensing a rounding error. Consider yourself corrected Hacker News commentor.
    Joel Spolsky(Stack Overflow的创始人)并不是微软的忠诚分子,他不负责技术决策,使用微软软件考虑的也只是性价比(这句可能翻译不准确)。Hacker News上一些评论者的说法需要纠正。
  • For their IO system they selected a RAID 10 array of Intel X25 solid state drives . The RAID array eased any concerns about reliability and the SSD drives performed really well in comparision to FusionIO at a much cheaper price.
    对于IO系统,他们选择的是Intel X25 solid state drives(SSD硬盘)的RAID 10磁盘阵列,这样的磁盘阵列,保证了可靠性。这个SSD硬盘用起来感觉不错,而且价格比FusionIO的便宜。
  • The full boat cost for their Microsoft licenses would be approximately $242K. Since Stack Overflow is using Bizspark they are not paying near the full sticker price, but that's the max they could pay.
    使用的这些微软软件,如果全部购买的 话,总费用大概在24.2万美元。由于Stack Overflow参加了微软的Bizspark计划,所以不需要付这么多钱,但是要付的话,最多也就是这么多。

Related Articles

  • Stack Exchange’s Architecture in Bullet Points
  • Stack Overflow’s New York Data Center - hardware of the various machines?
  • Designing For Scalability of Management and Fault Tolerance
  • HackerNews Thread
  • Stack Overflow Blog
  • Stack Overflow Search — Now 81% Less Crappy - Lucene is now running on an underused cluster.
  • State of the Stack 2010 (a message from your CEO)
  • Stack Overflow Network Configuration
  • Does StackOverflow use caching and if so, how?
  • Meta StackOverflow
  • How does StackOverflow handle cache invalidation?
  • Which tools and technologies build the Stack Exchange Network?
  • How does Stack Overflow handle spam?
  • Our Storage Decision
  • How are “Hot” Questions Selected? 
  • How are “related” questions selected? - the title, the question body, and the tags. 
  • Stack Overflow and DVCS - Stack Overflow selects Mercurial for source code control.
  • Server Fault Chat Room 
  • C# Redis Client

这篇关于基于.NET的大型Web站点StackOverflow架构分析(转)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300279

相关文章

JavaWeb-WebSocket浏览器服务器双向通信方式

《JavaWeb-WebSocket浏览器服务器双向通信方式》文章介绍了WebSocket协议的工作原理和应用场景,包括与HTTP的对比,接着,详细介绍了如何在Java中使用WebSocket,包括配... 目录一、概述二、入门2.1 POM依赖2.2 编写配置类2.3 编写WebSocket服务2.4 浏

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re