LibTorch实战二:MNIST的libtorch代码

2023-10-29 09:52
文章标签 实战 代码 mnist libtorch

本文主要是介绍LibTorch实战二:MNIST的libtorch代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、前言

二、另一种下载数据集方式

三、MNIST的Pytorch源码

四、MNIST的Libtorch源码

一、前言

        前面介绍过了MNIST的python的训练代码、和基于torchscript的模型序列化(导出模型)。今天看看,如何使用libtorch C++来实现手写数字训练。     

二、另一种下载数据集方式

        同时,我已经说过了,对你MNIST数据集该如何下载。有关数据集的下载,这种不重要的问题卡了很久,简直浪费时间,差评。这里再介绍一种下载方式,在官方仓库中,有个脚本可以直接下载https://github.com/pytorch/examples/blob/main/cpp/tools/download_mnist.py,直接在命令行窗口执行就可以下载,如下,可能网络会很卡,不过下载好了。

        这里直接把download_mnist.py源码贴出来吧:

from __future__ import division
from __future__ import print_functionimport argparse
import gzip
import os
import sys
import urllibtry:from urllib.error import URLErrorfrom urllib.request import urlretrieve
except ImportError:from urllib2 import URLErrorfrom urllib import urlretrieveRESOURCES = ['train-images-idx3-ubyte.gz','train-labels-idx1-ubyte.gz','t10k-images-idx3-ubyte.gz','t10k-labels-idx1-ubyte.gz',
]def report_download_progress(chunk_number, chunk_size, file_size):if file_size != -1:percent = min(1, (chunk_number * chunk_size) / file_size)bar = '#' * int(64 * percent)sys.stdout.write('\r0% |{:<64}| {}%'.format(bar, int(percent * 100)))def download(destination_path, url, quiet):if os.path.exists(destination_path):if not quiet:print('{} already exists, skipping ...'.format(destination_path))else:print('Downloading {} ...'.format(url))try:hook = None if quiet else report_download_progressurlretrieve(url, destination_path, reporthook=hook)except URLError:raise RuntimeError('Error downloading resource!')finally:if not quiet:# Just a newline.print()def unzip(zipped_path, quiet):unzipped_path = os.path.splitext(zipped_path)[0]if os.path.exists(unzipped_path):if not quiet:print('{} already exists, skipping ... '.format(unzipped_path))returnwith gzip.open(zipped_path, 'rb') as zipped_file:with open(unzipped_path, 'wb') as unzipped_file:unzipped_file.write(zipped_file.read())if not quiet:print('Unzipped {} ...'.format(zipped_path))def main():parser = argparse.ArgumentParser(description='Download the MNIST dataset from the internet')parser.add_argument('-d', '--destination', default='.', help='Destination directory')parser.add_argument('-q','--quiet',action='store_true',help="Don't report about progress")options = parser.parse_args()if not os.path.exists(options.destination):os.makedirs(options.destination)try:for resource in RESOURCES:path = os.path.join(options.destination, resource)url = 'http://yann.lecun.com/exdb/mnist/{}'.format(resource)download(path, url, options.quiet)unzip(path, options.quiet)except KeyboardInterrupt:print('Interrupted')if __name__ == '__main__':main()

 执行下载过程中,可能会很卡,下载信息如下:

(base) C:\Users\Administrator\Desktop\examples-master_2\examples-master\cpp\tools>python download_mnist.py              
.\train-images-idx3-ubyte.gz already exists, skipping ...                                                               
.\train-images-idx3-ubyte already exists, skipping ...                                                                  
.\train-labels-idx1-ubyte.gz already exists, skipping ...                                                               
.\train-labels-idx1-ubyte already exists, skipping ...                                                                  
.\t10k-images-idx3-ubyte.gz already exists, skipping ...                                                                
.\t10k-images-idx3-ubyte already exists, skipping ...                                                                   
.\t10k-labels-idx1-ubyte.gz already exists, skipping ...                                                                
.\t10k-labels-idx1-ubyte already exists, skipping ... 

python代码训练5个epoch结果。

Test set: Average loss: 0.0287, Accuracy: 9907/10000 (99%)

三、MNIST的Pytorch源码

MNIST 的python源码:

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLRclass Net(nn.Module):def __init__(self): # self指的是类实例对象本身(注意:不是类本身)。# self不是关键词# super 用于继承,https://www.runoob.com/python/python-func-super.htmlsuper(Net, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.dropout1 = nn.Dropout(0.25)self.dropout2 = nn.Dropout(0.5)self.fc1 = nn.Linear(9216, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):# input:28*28x = self.conv1(x) # -> (28 - 3 + 1 = 26),26*26*32x = F.relu(x)# input:26*26*32x = self.conv2(x) # -> (26 - 3 + 1 = 24),24*24*64# input:24*24*64x = F.relu(x)x = F.max_pool2d(x, 2)# -> 12*12*64 = 9216x = self.dropout1(x) #不改变维度x = torch.flatten(x, 1) # 9216*1# w = 128*9216x = self.fc1(x) # -> 128*1x = F.relu(x)x = self.dropout2(x)# w = 10*128x = self.fc2(x) # -> 10*1output = F.log_softmax(x, dim=1) # softmax归一化return outputdef train(args, model, device, train_loader, optimizer, epoch):# 在使用pytorch构建神经网络的时候,训练过程中会在程序上方添加一句model.train(),# 作用是启用batch normalization和drop out。# 测试过程中会使用model.eval(),这时神经网络会沿用batch normalization的值,并不使用drop out。model.train()# 可以查看下卷积核的参数尺寸#model.conv1.weight.shape torch.Size([32, 1, 3, 3]#model.conv2.weight.shape torch.Size([64, 32, 3, 3])for batch_idx, (data, target) in enumerate(train_loader):# train_loader.dataset.data.shape# Out[9]: torch.Size([60000, 28, 28])# batch_size:64# data:64个样本输入,torch.Size([64, 1, 28, 28])# target: 64个label,torch.Size([64])data, target = data.to(device), target.to(device)optimizer.zero_grad()# output:torch.Size([64, 10])output = model(data)# 类似于交叉熵# reference: https://blog.csdn.net/qq_22210253/article/details/85229988loss = F.nll_loss(output, target)loss.backward()optimizer.step()# 我们打印一个卷积核参数看看# print(model.conv2._parameters)if batch_idx % args.log_interval == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))if args.dry_run:breakdef test(model, device, test_loader):model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch losspred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probabilitycorrect += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))def main():# Training settingsparser = argparse.ArgumentParser(description='PyTorch MNIST Example')parser.add_argument('--batch-size', type=int, default=64, metavar='N',help='input batch size for training (default: 64)')parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',help='input batch size for testing (default: 1000)')parser.add_argument('--epochs', type=int, default=5, metavar='N',help='number of epochs to train (default: 14)')parser.add_argument('--lr', type=float, default=1.0, metavar='LR',help='learning rate (default: 1.0)')parser.add_argument('--gamma', type=float, default=0.7, metavar='M',help='Learning rate step gamma (default: 0.7)')parser.add_argument('--no-cuda', action='store_true', default=False,help='disables CUDA training')parser.add_argument('--dry-run', action='store_true', default=False,help='quickly check a single pass')parser.add_argument('--seed', type=int, default=1, metavar='S',help='random seed (default: 1)')parser.add_argument('--log-interval', type=int, default=10, metavar='N',help='how many batches to wait before logging training status')parser.add_argument('--save-model', action='store_true', default=True,help='For Saving the current Model')args = parser.parse_args()use_cuda = not args.no_cuda and torch.cuda.is_available()torch.manual_seed(args.seed)device = torch.device("cuda" if use_cuda else "cpu")train_kwargs = {'batch_size': args.batch_size}test_kwargs = {'batch_size': args.test_batch_size}if use_cuda:cuda_kwargs = {'num_workers': 1,'pin_memory': True, # 锁页内存,可以加快内存到显存的速度'shuffle': True}train_kwargs.update(cuda_kwargs)test_kwargs.update(cuda_kwargs)# torchvision.transforms是pytorch中的图像预处理包。一般用Compose把多个步骤整合到一起#transform = transforms.Compose([transforms.ToTensor(), # (H x W x C)、[0, 255]  -> (C x H x W)、[0.0, 1.0]transforms.Normalize((0.1307,), (0.3081,)) # 数据的归一化])dataset1 = datasets.MNIST('../data', train=True, download=True,transform=transform)dataset2 = datasets.MNIST('../data', train=False,transform=transform)train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)model = Net().to(device)optimizer = optim.Adadelta(model.parameters(), lr=args.lr)# 固定步长衰减# reference: https://zhuanlan.zhihu.com/p/93624972scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)for epoch in range(1, args.epochs + 1):train(args, model, device, train_loader, optimizer, epoch)test(model, device, test_loader)scheduler.step()if args.save_model:#torch.save(model.state_dict(), "pytorch_mnist.pt")torch.save(model, "pytorch_mnist.pth")if __name__ == '__main__':main()

四、MNIST的Libtorch源码

以下是C++代码(官方的C++代码的网络结果似乎和python代码不能完全对应上,所以我作了修改,其实就是改了网络模型,请看struct Net : torch::nn::Module):可以对一下struct Net : torch::nn::Module和上述python代码中的 class Net(nn.Module):

#include<torch/torch.h>
#include<cstddef>
#include<iostream>
#include<vector>
#include<string>
// 继承自Module模块
struct Net : torch::nn::Module
{// 构造函数Net() :conv1(torch::nn::Conv2dOptions(1, 32, 3)), // kernel_size = 5conv2(torch::nn::Conv2dOptions(32, 64, 3)),fc1(9216, 128),fc2(128, 10){register_module("conv1", conv1);register_module("conv2", conv2);register_module("conv2_drop", conv2_drop);register_module("fc1", fc1);register_module("fc2", fc2);}// 成员函数:前向传播torch::Tensor forward(torch::Tensor x){// input:1*28*28x = torch::relu(conv1->forward(x)); //conv1:(28 - 3 + 1 = 26), 26*26*32// input:26*26*32x = torch::max_pool2d(torch::relu(conv2->forward(x)), 2);//conv2:(26 - 3 + 1 = 24),24*24*64; max_poolded:12*12*64 = 9216x = torch::dropout(x, 0.25, is_training());x = x.view({ -1, 9216 });// 9216*1// w:128*9216x = torch::relu(fc1->forward(x)); //fc1:w = 128*9216,w * x ->128*1x = torch::dropout(x, 0.5, is_training());// w:10*128x = fc2->forward(x);//fc2:w = 10*128,w * x -> 10*1x = torch::log_softmax(x, 1);return x;}// 模块成员torch::nn::Conv2d conv1;torch::nn::Conv2d conv2;torch::nn::Dropout2d conv2_drop;torch::nn::Linear fc1;torch::nn::Linear fc2;
};//train
template<typename DataLoader>
void train(size_t epoch, Net& model, torch::Device device, DataLoader& data_loader, torch::optim::Optimizer& optimizer, size_t dataset_size)
{//set "train" modemodel.train();size_t batch_idx = 0;for (auto& batch: data_loader){auto data = batch.data.to(device);auto targets = batch.target.to(device);optimizer.zero_grad();auto output = model.forward(data);auto loss = torch::nll_loss(output, targets);AT_ASSERT(!std::isnan(loss.template item<float>()));loss.backward();optimizer.step();// 每10个batch_size打印一次lossif (batch_idx++ % 10 == 0){std::printf("\rTrain Epoch: %ld [%5ld/%5ld] Loss: %.4f",epoch,batch_idx * batch.data.size(0),dataset_size,loss.template item<float>());}}
}template<typename DataLoader>
void test(Net& model, torch::Device device, DataLoader& data_loader, size_t dataset_size)
{torch::NoGradGuard no_grad;// set "test" modemodel.eval();double test_loss = 0;int32_t correct = 0;for (const auto& batch: data_loader){auto data = batch.data.to(device);auto targets = batch.target.to(device);auto output = model.forward(data);test_loss += torch::nll_loss(output, targets, /*weight=*/{}, torch::Reduction::Sum).template item<float>();auto pred = output.argmax(1);// eq = equal 判断prediction 是否等于labelcorrect += pred.eq(targets).sum().template item<int64_t>();}test_loss /= dataset_size;std::printf("\nTest set: Average loss: %.4f | Accuracy: %.3f\n",test_loss,static_cast<double>(correct) / dataset_size);
}int main()
{torch::manual_seed(1);torch::DeviceType device_type;if (torch::cuda::is_available()){std::cout << "CUDA available! Training on GPU." << std::endl;device_type = torch::kCUDA;}else{std::cout << "Training on CPU." << std::endl;device_type = torch::kCPU;}torch::Device device(device_type);Net model;model.to(device);// load train dataauto train_dataset = torch::data::datasets::MNIST("D://MNIST//").map(torch::data::transforms::Normalize<>(0.1307, 0.3081)).map(torch::data::transforms::Stack<>());const size_t train_dataset_size = train_dataset.size().value();std::cout << train_dataset_size << std::endl;auto train_loader = torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(std::move(train_dataset), 64);// load test dataauto test_dataset = torch::data::datasets::MNIST("D://MNIST//", torch::data::datasets::MNIST::Mode::kTest).map(torch::data::transforms::Normalize<>(0.1307, 0.3081)).map(torch::data::transforms::Stack<>());const size_t test_dataset_size = test_dataset.size().value();auto test_loader =torch::data::make_data_loader(std::move(test_dataset), 1000);// optimizertorch::optim::SGD optimizer(model.parameters(), torch::optim::SGDOptions(0.01).momentum(0.5));//trainfor (size_t epoch = 0; epoch < 5; epoch++){train(epoch, model, device, *train_loader, optimizer, train_dataset_size);test(model, device, *test_loader, test_dataset_size);}// savereturn 1;
}

C++代码训练结果如图:

可以看到C++版本的 MNIST代码能够正常训练模型

这篇关于LibTorch实战二:MNIST的libtorch代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299877

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前