一种轻便的裸机多任务实现方法

2023-10-29 07:20

本文主要是介绍一种轻便的裸机多任务实现方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://mp.weixin.qq.com/s/uf89w_qFBoVFLez45dlrDQ

一种轻便的裸机多任务实现方法

嵌入式大杂烩 今天

以下文章来源于嵌入式实验基地 ,作者Embedded小飞哥

关注「嵌入式大杂烩」,选择「星标公众号」一起进步!

来源:嵌入式实验基地

前言

你是否还在为一大堆任务放在while中,通过一个个标志,做一大堆if...else...switch...case...烦恼,想跑个freertos或者ucos,发现芯片空间有限,添加不进去了...那本文小飞哥推荐你一种裸机多任务的实现方法,让你告别繁琐的while(1),有错误之处,烦请指出,一起交流~

模型分析

刚开始写代码的时候,习惯这种写法,这种方法首先是没有问题的,但是在实时性方面可能会差那么点意思,比如,任务2是需要频繁刷新的任务,任务1不是很紧急,但是执行时间比较长,那么就只能等待任务1执行完才会去执行任务2,任务2的数据刷新不及时。

随着任务的增多,这种完全等待一个任务完成再去执行下一个任务的弊端会体现的更加明显。

  while (1){if (task_flag1){task_flag1 = 0;task01();//任务1}else if (task_flag2){task_flag2 = 0;task02();//任务2}else if (){}... else...{taskn();//任务n}}

用过freertos或者其他系统的小伙伴一定知道,对于多任务的处理让系统运行看起来系统似乎是“并行”的,那么受限于单片机资源的情况下,能不能实现类似的功能,答案是肯定的,接下来就一起来聊聊如何实现。

其实,在日常的开发中我们已经有用到过这种思想,比如我们需要在不影响任务执行的情况下,在while(1)循环中实现LED 周期闪烁,提示系统正常运行,用定时器当然可以。。。今天不聊定时器,就用点比较接地气的来举例:

 ledFlashCount++;if (ledFlashCount % 500 == 0){ledFlashCount = 0;HAL_GPIO_TogglePin(LED_GPIO_Port, led_pin);}HAL_Delay(1);

如果直接延时500ms,想想while(1)会怎么样,老板看了直接走人~,所以我们采用一种时间分割的方式,每次执行1ms,到500次时,执行相应功能,这样虽然还有1ms的阻塞延时,但想比于500ms,显然是个巨大的飞跃。

根据上面的思想,我们也可以采取时间分割的方式去处理不同的任务,把一个完整的任务分割成一段一段时间片,单次执行一段,不断周期性扫描,如此一来,我们就能够保证任务能够得到较为及时的刷新,在CSDN上有个小伙伴描述的挺不错。

一个任务的线程:

假设一个任务的执行代码有50步,通常编程只会一次执行完毕,但是我们现在需要想想,因为我们会嫌这个任务总占用着ALU的时间而影响其他任务的执行效果,所以就可以对任务进行划分,把它分为5份,每份10步,这样我们每次执行其中的一个程序片–每次正在运行的程序片我们称为线程。

(CSDN博客:https://blog.csdn.net/qq_37272520/article/details/88916568)

图片

代码实现

首先定义一个跟任务相关的结构体,Delay正是时间片执行的时长,Period是任务的执行周期

// ------ Public data type declarations ----------------------------// User-defined type to store required data for each task
typedef struct
{// Pointer to the task// (must be a 'uint32_t (void)' function)uint32_t (*pTask)(void);//  void (*pTask) (void);// Delay (ticks) until the task will (next) be runuint32_t Delay;// Interval (ticks) between subsequent runs.uint32_t Period;
} sTask_t;

添加(创建)任务

// Add_Task
void SCH_Add_Task(uint32_t (*pTask)(),const uint32_t DELAY,const uint32_t PERIOD)
{uint32_t Task_id = 0;// Check pre-conditions (START)// First find a gap in the array (if there is one)while ((SCH_tasks_g[Task_id].pTask != SCH_NULL_PTR) && (Task_id < SCH_MAX_TASKS)){Task_id++;}// Have we reached the end of the list?if ((Task_id < SCH_MAX_TASKS) || (PERIOD > 0)){// If we're here, there is a space in the task array// and the task to be added is periodicSCH_tasks_g[Task_id].pTask = pTask;SCH_tasks_g[Task_id].Delay = DELAY + 1;SCH_tasks_g[Task_id].Period = PERIOD;}
}

删除任务

void SCH_delete_Task(uint32_t (*pTask)())
{uint32_t id_counter;for (id_counter = 0; id_counter < SCH_MAX_TASKS;){if (SCH_tasks_g[id_counter].pTask != pTask)id_counter++;else{__disable_irq();SCH_tasks_g[id_counter].pTask = SCH_NULL_PTR;__enable_irq();id_counter = SCH_MAX_TASKS + 1;}}
}

更改任务

//任务运行过程中切换为其他任务运行。
//则当前任务返回后不再运行。
//为了安全应该关中断操作。
// 可以在task中增加一个参数,task运行到一定次数切换到其他的task;
//或者 事件触发 退出当前task,执行新的task
void SCH_change_Task(uint32_t (*pTask)(),const uint32_t DELAY,const uint32_t PERIOD)
{__disable_irq();if ((Current_Task_id < SCH_MAX_TASKS) || (PERIOD > 0)){SCH_tasks_g[Current_Task_id].pTask = pTask;SCH_tasks_g[Current_Task_id].Delay = DELAY + 1;SCH_tasks_g[Current_Task_id].Period = PERIOD;}__enable_irq();
}

执行调度器

/*----------------------------------------------------------------------------*-SCH_Dispatch_Tasks()
-*----------------------------------------------------------------------------*/
void SCH_Dispatch_Tasks(void)
{uint32_t Status;uint32_t Task_id;// Go through the task arrayfor (Task_id = 0; Task_id < SCH_MAX_TASKS; Task_id++){// Check if there is a task at this locationif (SCH_tasks_g[Task_id].pTask != SCH_NULL_PTR){if (SCH_tasks_g[Task_id].Delay == 0){//   printf("\n task=%d \n",Task_id);Current_Task_id = Task_id;Status = (*SCH_tasks_g[Task_id].pTask)(); // Run the task// All tasks are periodic: schedule task to run againSCH_tasks_g[Task_id].Delay = SCH_tasks_g[Task_id].Period;}}}// Update inverted copy of Tick_count_g//   Tick_count_ig = ~Tick_count_g;// The scheduler enters idle mode at this point// __WFI();
}

定时器查询时间片

void TIMX_IRQHandler_user(void)
{uint32_t Task_id;++Tick_count_g;for (Task_id = 0; Task_id < SCH_MAX_TASKS; Task_id++){if (SCH_tasks_g[Task_id].Delay > 0)SCH_tasks_g[Task_id].Delay--;}
}

可以看到,代码量是非常小的,当然了,功能也很单一,有得必有失嘛

实验测试

封装好了必要的函数之后,接下来学习如何使用,很简单,首先创建几个任务,小飞哥创建了2个任务,两个任务分别是task01,“时间片”是50ms(自己根据需要订),任务周期是500ms,task02,“时间片”是10ms(自己根据需要订),任务周期是1000ms

  SCH_Add_Task(Task_01,50,500);SCH_Add_Task(Task_02,10,1000);
uint32_t Task_01(void){//HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);//HAL_Delay(500);printf("task01 test\r\n");
}uint32_t Task_02(void){printf("task02 test\r\n");//HAL_Delay(500);
}

在systick(或者其他定时器)中调用,关于Systick的使用详解见:Systick

void HAL_SYSTICK_Callback(void)
{TIMX_IRQHandler_user(); //100ms调用一次
//  systick_flag = 1; //中断置标志,逻辑函数中断外执行
}

最后只需要在while中调用调度器就OK了(类似于LVGL的设计思路),根据我们的设计,两个任务,一个是500ms打印“task01 test”,另一个1000ms打印“task02 test”

图片

OK,完美,end~

这篇关于一种轻便的裸机多任务实现方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299107

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程