等离子体技术【二】--刻蚀方式分类

2023-10-29 06:50

本文主要是介绍等离子体技术【二】--刻蚀方式分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Plasma:广泛应用而又复杂的物理过程

等离子体刻蚀在集成电路制造中已有40余年的发展历程,自70年代引入用于去胶,80年代成为集成电路领域成熟的刻蚀技术。刻蚀采用的等离子体源常见的有容性耦合等离子体(CCP-capacitively coupled plasma)、感应耦合等离子体ICP(Inductively coupled plasma)和微波ECR 等离子体(microwave electron cyclotron resonance plasma) 等。虽然等离子体刻蚀设备已广泛应用于集成电路制造,但由于等离子体刻蚀过程中复杂的物理和化学过程到目前为止仍没有一个有效的方法完全从理论上模拟和分析等离子体刻蚀过程。除刻蚀外,等离子体技术也成功的应用于其他半导体制程,如溅射和等离子体增强化学气相沉积(PECVD)。当然鉴于plasma丰富的活性粒子,plasma也广泛应用于其他非半导体领域,如空气净化,废物处理等。

ca7c27ea0bcc43da88a0fcd2518c64dc.png

               图1 一种容性耦合等离子体放电现象

由于刻蚀过程中复杂的物理和化学反应, 不同中性粒子、带电粒子间的场(电场,流场,力场等)的相互作用,使得plasma刻蚀很难描述。一些文章中都是针对初学者简单的介绍了等离子体刻蚀中的主要几个过程,但是对于原理性的描述非常有限。Nasser, “Fundamentals of Gaseous Ionization and Plasma Electronics”, John Wiley & Sons, 1971,Chapman, “Glow Discharge Processes”, John Wiley & Sons, 1980两本经典书籍全面的介绍了等离子体的基本物理定律和现象。物理和工程领域的相关人员可从此两本书中了解等离子体技术。

下面我们将简单的介绍常用的几种等离子体刻蚀技术。

2.容性耦合等离子体(CCP)

等离子体是部分离化的中性气体,在等离子体中自由电子与中性分子,原子进行碰撞,通过碰撞电离,进一步得到更多的电子和离子。基于电子的能量,可以获得更丰富的离子,激发态高能中性粒子等,同时由于电子吸附在中性气体表面还可获得负离子。由于每种气体在原子分子物理学中有各自的能级结构,故高能电子可以将气体激发到不同的能级上,当气体分子、原子从高能级向低能级回迁时将会辐射出不同能量的光子,不同能量的光子代表了不同的波长,通过分析光谱我们可以有效地分析等离子体的刻蚀过程。该分析诊断过程常被用于半导体制造中的EDP监测。

16fe9821388540dfba1cd011cc87b39f.png

             图2 等离子体中的激发碰撞与光谱辐射

容性耦合等离子体源典型的腔室结构如下图。功率加载到上下电极上,通常频率为13.56MHZ。所谓的暗鞘层将在所有器壁表面形成,暗鞘层常被认为是绝缘体或电容,因此可以认为功率通过一个电容器转移至等离子体。

424ea13da95741f7bce5f5361675fb76.png

                 图3 常用CCP源的腔室结构

在频率为1MHz和100MHz之间,自由电子可以伴随电场的变化获得能量,离子由于质量较重,往往不会伴随变化的电场运动。

容性耦合等离子体放电气压范围往往从几个毫托到几百毫托,因为电子质量远低于离子质量,电子可以运动更远更长的距离并与气体和器壁进行碰撞,电离出更多的电子和离子。而器壁周围因为电子游离只留下笨重的离子,但整个腔室必须保证电中性,故必然会在器壁形成一种结构来阻挡电子继续在器壁周围的电离,而这种结构平衡了等离子体的电中性特性。这种结构即鞘层,鞘层可认为前面所说的电容器,因为电容器处于放电环境中,表面有电荷积累,就形成了一个电场,一个电场必然对应一个电压,因为电容器周围达到的电荷积累动态平衡,故这个电场,电压为动态的静电场,即直流电场和直流电压,故VDC形成。因为腔室内壁接地,而形成的偏压电场为阻止电子,故对地内壁而言此VDC为负值,即负偏压。在电极上此负偏压与射频电压一起形成了复合电压,如下图。

dc3c9647dbf54e5b9f98ab3b4314fbc4.png

                 图4 DC和AC在电极上的波形

2. 1影响VDC因素

2.1.1 反应腔的尺寸和刻蚀模式

VDC为电极和等离子体间的电压降;A1为电极1的面积,A2为电极2的面积,n为指数因子,一般1<n<2;< span="">

该公式可适用于任何电极结构,如果电极1加载功率,电极2接地,其VDC形成如下图所示。

f50c5b679b9b456680e47e3ec0f3655b.png

                           图5 VDC的形成

2.1.2 等离子体参数

2.1.2.1 气体和流量

电负性气体是一个主要因素,当其他过程参数保持一定时,气体的电负特性将决定VDC。地电负性气体如O2,N2有较高的负偏压VDC,含F,Cl,Br的气体有更强电负性,因为VII族的元素很容易吸附自由电子。因子在含F,Cl,Br的气体中电子密度会大大降低。含F比含Cl气体电负性更强, SF6为典型的电负性气体。

气体流量通常对VDC没有较大影响,但是如果用混合气体,当气体的相对流量增加时,VDC单调的增加,通常,当加入弱电负性气体时,负偏压将会急剧增加。对于电负性气体放电,小的流量变化对VDC影响也不大。

2.1.2.2 气压

气压也影响VDC,高气压,更多的分子、原子与电子碰撞,产生新的电子和离子,因此通过提高气压,增加更多的自由电子,提高了负偏压。另一方面,气压增加,密度增加,电子的平均自由程降低,在和分子碰撞之前,电子获得能量减小,导致新的电子、离子减少。因此两个方面相反的趋势,对于等离子体刻蚀,可以看到,1-100mT范围内,等离子密度随气压增加而增加,但更高的气压,密度随气压增加而降低。VDC也与自由电子能量相关,高气压,电子碰撞增加,电子能量因碰撞而降低。考虑到这些机制,我们可以理解VDC随气压增加并不会持续增加。

2.1.2.3 功率

功率的影响很直接,功率增加,密度和电子能量都增加,因此VDC增加;

2.1.2.4结论

当Wafer放置在下电极上,可以在等离子体和Wafer之间得到较高的电压降即VDC。当电负性气体添加时,在低气压下,我们可以获得高的电压降VDC,对于高功率,RIE反应离子刻蚀,我们可以通过以上途径获得高VDC。如果要获得低的VDC则从反方向条件着手。

2. 2刻蚀机制

刻蚀机理的解释适用于所有类型的等离子体技术,不局限于RIE。

通常,等离子体刻蚀是化学刻蚀,不是物理刻蚀,这意味着固体原子与气体原子反应形成化学分子,然后从基片表面移除形成刻蚀。因为VDC的存在,通常存在一定的基片溅射,对于大量的刻蚀,物理刻蚀效应很弱可以被忽略。

几个主要的刻蚀过程为:

  1. 形成反应粒子;
  2. 反应粒子到达Wafer表面并被吸附
  3. Wafer表面化学吸附反应,形成化学键,并形成反应产物;
  4. 解吸附化学反应产物,并在Wafer表面移除,抽离腔室;

举例:SF6+e—> SF5+F+e; SF5+e—> SF4+F+e;等等

F原子到达基片与基片反应F+Si—>SiF,SiF+F—>SiF2;SiF+SiF—>SiF4...

32bf160fd0aa4512b6da267245629ef7.png

                    图6 等离子体刻蚀基本机制

2. 3 VDC 对刻蚀的影响

1.刻蚀速率,因为电子密度和能量与VDC相关联,故以上的化学反应过程与速率相对应;

2.离子轰击可以造成Wafer表面的建设损伤;而离子轰击的能量与VDC相关,VDC越高轰击越强;

3.离子轰击还会对刻蚀形貌有一定的影响等等

4.对于非易挥发性副产物,通过一定的离子轰击可以将副产物解离形成易挥发性产物,使本身在易在Wafer表面已形成的膜层消失;

对于VDC主要会加速离子对Wafer表面的作用,根据不同的工艺需求,调节VDC可以调节对Wafer的刻蚀。

89ab69a4f7f44aca9f7176dfea761b07.png

                          图7 离子轰击作用

3.感应耦合等离子体(ICP)

两种类型的感应耦合等离子体源:采用柱形和平面结构,如图8所示。射频电流流经线圈在腔室内产生电磁场激发气体产生等离子体,偏压源控制离子轰击能量。通过这种方式,可以独立的控制等离子体密度和离子的轰击能量。因此ICP刻蚀机提供了更多的调控手段。

1f65159a7ad240039dcd7d01c6a25b2b.png

                     图8 两种方式的ICP结构

用于等离子体刻蚀的ICP源通常为平面结构,该方式容易获得可调的等离子体密度和等离子体均匀性分布,此外平面ICP源使用的介质窗也易于加工。石英和陶瓷是常用的介质窗材料。

此外感应耦合ICP源也存在容性耦合,介质窗作为线圈和等离子体之间的耦合层是作为一个电容器存在,在线圈的输出端电压达到2000V时,容性耦合将会形成。这个容性高压可以点燃和维持等离子体放电,另一方面,局部高压的形成也会导致介质窗的刻蚀,导致颗粒的产生或者造成晶圆的污染。为了减小容性耦合,通常采用法拉第屏蔽或者在线圈末端串联接地电容的方式。

c4b17be2222740a6a4be198a75d4a692.png

                图9 一种法拉第屏蔽ICP源结构

这篇关于等离子体技术【二】--刻蚀方式分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298975

相关文章

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

Java中的密码加密方式

《Java中的密码加密方式》文章介绍了Java中使用MD5算法对密码进行加密的方法,以及如何通过加盐和多重加密来提高密码的安全性,MD5是一种不可逆的哈希算法,适合用于存储密码,因为其输出的摘要长度固... 目录Java的密码加密方式密码加密一般的应用方式是总结Java的密码加密方式密码加密【这里采用的

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象