跟着PNAS学作图 | 提供全文数据和代码

2023-10-29 05:59

本文主要是介绍跟着PNAS学作图 | 提供全文数据和代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文

题目:Death rates at specific life stages mold the sex gap in life expectancy

网址: https://www.pnas.org/doi/full/10.1073/pnas.2010588118

代码网址

https://github.com/CPop-SDU/sex-gap-e0-pnas

该文章发表于2021年,论文中图形对我们一部分同学仍具参考价值。作者提供的全套的代码和数据,可以直接使用。此外,作者的数据和代码写的非常的规整。但是,需要看懂和运行代码,还是需要有一定的基础。

论文主图

论文主图仅有两张,如下图所示。
Figure 1
Figure 2

代码

Figure 1


# function to localize pathsdevtools::source_gist("32e9aa2a971c6d2682ea8d6af5eb5cde")# prepare session
source(lp("0-prepare-session.R"))# theme -------------------------------------------------------------------
load("../dat/palettes.rda" %>% lp)theme_custom <- theme_minimal(base_family = font_rc) +theme(legend.position = "bottom",strip.background = element_blank(),strip.text = element_blank(),panel.grid.minor =  element_blank(),panel.grid.major =  element_line(size = .25),panel.ontop = T)

作者将相关的代码编写在其他的R脚本中,使用时直接进行调用。

# Fig 1 -- RELATIVE ----------------------------------
load("../dat/a6gap33cntrs.rda" %>% lp)# relative
df6 %>% filter(country %>% is_in(c("SWE", "USA", "JPN", "RUS"))) %>%mutate(name = name %>% fct_recode(USA = "United States") %>% fct_rev()) %>%ggplot() +geom_col(aes(year, ctb_rel %>% multiply_by(100), fill = age_group),position = position_stack(reverse = TRUE),color = NA,width = 1) +facet_grid(name ~ ., scales = "free_y", space = "free") +coord_cartesian(ylim = c(-10, 120), expand = FALSE)+scale_x_continuous(breaks = seq(1800, 2000, 50))+scale_y_continuous(breaks = seq(0, 100, 25), position = "right")+scale_fill_manual(values = pal_six, guide  = guide_legend(ncol = 1, reverse = TRUE)) +theme_minimal(base_family = font_rc, base_size = 20) +theme(legend.position = c(.6, .5),strip.background = element_blank(),strip.text = element_blank(),panel.grid.minor =  element_blank(),panel.grid.major =  element_line(size = .1),panel.spacing = unit(0, "lines"),panel.ontop = T)+labs(x = NULL,y = "Contribution, %",fill = "Age group")+# label countriesgeom_text(data = . %>% select(name, row, column) %>%  distinct(),aes(label = name, color = name), x = 2015, y = 120, hjust = 1, vjust = 1, size = 9, fontface = 2,family = font_rc)+scale_color_manual(values = pal_four %>% rev, guide = FALSE)one_outer <- last_plot()
one_outer# plot ratio
load("../dat/df4qx.rda" %>% lp)df4qx %>%pivot_wider(names_from = sex, values_from = qx) %>% ggplot(aes(age, y = m/f, color = country))+geom_hline(yintercept = 1, color = "gray25",  size = .5)+geom_smooth(se = F, size = 1, color = "#ffffff", span = .25)+geom_smooth(se = F, size = .5, span = .25)+scale_x_continuous(breaks = c(0, 15, 40, 60, 80))+scale_y_continuous(trans = "log", breaks = c(.5, 1, 2, 3), labels = c("", 1, 2, 3),limits = c(.75, 3.5))+scale_color_manual(NULL, values = pal_four)+theme_minimal(base_family = font_rc, base_size = 16)+theme(legend.position = "none",panel.grid.minor = element_blank())+labs(y = "Sex ratio, log scale",x = "Age")+annotate("text", x = 50, y = .9, label = "Most recent year",size = 8.5, color = "grey50", alpha = .5,vjust = 1, family = font_rc, fontface = 2)one_a <- last_plot()
one_a
# Death risk Ratio, Sweden, years 1750, 1800, 1850, 1900, 1960, 2019
# plot qx
load("../dat/qxdiff.rda" %>% lp)qxdiff %>% filter(country == "SWE", year %>% is_in(c(1800, 1900, 1960, 2019 ))) %>% ggplot(aes(age, y = ratio, color = year %>% factor))+geom_hline(yintercept = 1, color = "gray25",  size = .5)+geom_smooth(se = F, size = .75, span = .4)+scale_x_continuous(breaks = c(0, 15, 40, 60, 80))+scale_y_continuous(trans = "log", breaks = c(.5, 1, 2, 3), labels = c("", 1, 2, 3),limits = c(.75, 3.5))+scale_color_viridis_d(end = .97)+theme_minimal(base_family = font_rc, base_size = 16)+theme(legend.position = c(.85, .75),legend.spacing.x = unit(.1, "line"),legend.key.height = unit(1, "line"),panel.grid.minor = element_blank())+labs(color = "Year",y = "Sex ratio, log scale",x = "Age")+annotate("text", x = 50, y = .9, label = "Sweden",size = 8.5, color = "#009C9C", vjust = 1, family = font_rc, fontface = 2)one_b <- last_plot()
one_b# plot difference
df4qx %>%pivot_wider(names_from = sex, values_from = qx) %>% ggplot(aes(x = age, y = m - f, color = country, group = country)) +geom_path(size = .5)+scale_color_manual(NULL, values = pal_four)+scale_x_continuous(breaks = c(0, 15, 40, 60, 80))+scale_y_continuous(trans = "log",breaks = c(.0001, .001, .01, .05),labels = c(.0001, .001, .01, .05) %>% paste %>% str_replace("0.", "."),limits = c(9e-6, .1))+theme_minimal(base_family = font_rc, base_size = 16)+theme(legend.position = c(.77, .25),legend.spacing.x = unit(.1, "line"),legend.key.height = unit(1, "line"),legend.text = element_text(size = 16),panel.grid.minor = element_blank())+labs(y = "Sex gap, log scale",x = "Age")one_c <- last_plot()
one_c# arrange and save
blank <- ggplot(tibble(x = 1, y = 1), aes(x, y))+geom_rect(xmin = -Inf, xmax = Inf,ymin = -Inf, ymax = Inf,fill = "#ffffff",color = NA)+theme_void()library(cowplot)
one <- ggdraw() +draw_plot(one_outer) +# white space for plotsdraw_plot(blank, x = 0, y = .75, width = 0.7, height = 0.25)+draw_plot(blank, x = 0, y = .55, width = 0.33, height = 0.42)+draw_plot(blank, x = 0, y = .33, width = 0.33, height = 0.67)+# inset plotsdraw_plot(one_a, x = 0, y = .66, width = .33, height = .33)+draw_plot(one_c, x = .34, y = .66, width = .33, height = .33)+draw_plot(one_b, x = 0, y = 0.35, width = .33, height = .33)+# annotate plot lettersdraw_text(LETTERS[c(1,3,2,4)],  x = c(.01, .35, .01, .01),y = c(.99, .99, .66, .3), hjust = 0,  vjust = 1, size = 20, family = font_rc, fontface = 2)ggsave(filename = "out/main-one.png" %>% lp, plot = one, width = 10, height = 10, type = "cairo-png"
)

**这样一连串的的就绘制出图1。但是,有多少同学可以知道作者绘制每个图形的数据类型是什么样呢?
**

如果大家有时间时间和精力可以可以试一下,如果不行,那么在本文的中点赞或留言,我们一起分开绘制每个图形,一起学习!!!!

附图

附图1

附图3

附图3

附图8


ENDING!!


往期文章:
1. 最全WGCNA教程(替换数据即可出全部结果与图形)

WGCNA分析 | 全流程分析代码 | 代码一

WGCNA分析 | 全流程分析代码 | 代码二

WGCNA分析 | 全流程代码分享 | 代码三


2. 精美图形绘制教程

精美图形绘制教程

小杜的生信筆記,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

这篇关于跟着PNAS学作图 | 提供全文数据和代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298698

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免