本文主要是介绍深度学习编译中间件之NNVM(十二)NNVM源代码阅读1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
参考文档
对于阅读NNVM源代码而言,建议从最外层使用的nnvm.compiler.build
函数开始阅读,逐渐深入.
这里先展示一个最简单的NNVM编译器的使用过程:
# 从本地文件加载mxnet模型
mx_sym, args, auxs = mx.model.load_checkpoint('mobilenet', 0)
nnvm_sym, nnvm_params = nnvm.frontend.from_mxnet(mx_sym, args, auxs)# 设置输入数据的shape
batch_size = 1
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape# 进行NNVM编译
with nnvm.compiler.build_config(opt_level = 3):graph, lib, params = nnvm.compiler.build(nnvm_sym, tvm.target.rasp(), shape={"data": data_shape}, params = nnvm_params)# 保存生成的执行so库
lib.export_library("mobilenet_deploy.so")
可以将nnvm.compiler.build
的执行过程总结为如下步骤:
- 校正Layout
- 初始化Pass(指定shape)
- 初始化所有变量(_all_var_init)
- 应用优化
- 预计算裁剪
- 融合相邻运算并生成最终so
- 保存变量的初始化值到params参数文件中
在介绍具体的步骤之前先介绍graph.apply
这个函数:
展示python/nnvm/graph.py
的部分代码
class Graph(object):def apply(self, passes):"""Apply passes to the graphParameters----------passes : str or list of strThe passes to be appliedReturns-------g : GraphThe transformed graph."""if isinstance(passes, string_types):passes = [passes]cpass = c_array(ctypes.c_char_p, [c_str(key) for key in passes])ghandle = GraphHandle()npass = nn_uint(len(passes))check_call(_LIB.NNGraphApplyPasses(self.handle, npass, cpass, ctypes.byref(ghandle)))return Graph(ghandle)
从上述代码可以看到graph.apply
用于调用后端Pass返回转换之后的图.具体通过NNGraphApplyPasses
接口来实现调用.
融合相邻运算并生成最终so
展示python/nnvm/build_module.py
的部分代码
# 代码可能有缩减,只展示核心代码
graph = graph_attr.set_shape_inputs(graph, shape)
graph = graph.apply("InferShape")graph = graph_attr.set_dtype_inputs(graph, dtype)graph._set_json_attr("target", str(target), "str")
graph._set_json_attr("target_host", str(target_host), "str")
graph._set_json_attr("opt_level", 1, "int")graph = graph.apply("InferShape").apply("InferType")
graph = graph.apply("GraphFusePartition").apply("GraphFuseCompile")libmod = graph_attr._move_out_module(graph, "module")
上述代码中的graph.apply
属于核心代码,这些代码用于调用后端Pass.
graph_attr._move_out_module
的定义位于python/nnvm/graph_attr.py
_move_out_module = tvm.get_global_func("nnvm.graph._move_module")
nnvm.graph._move_module的定义位于src/compiler/packed_func_ext.cc
TVM_REGISTER_GLOBAL("nnvm.graph._move_module").set_body([](TVMArgs args, TVMRetValue *rv) {const nnvm::Graph& g = args[0].AsExtension<Graph>();*rv = const_cast<nnvm::Graph*>(&g)->MoveCopyAttr<tvm::runtime::Module>(args[1]);});
Graph.MoveCopyAttr的定义位于include/nnvm/top/graph.h
template<typename T>
inline T Graph::MoveCopyAttr(const std::string& attr_name) {auto it = attrs.find(attr_name);CHECK(it != attrs.end())<< "Cannot find attribute " << attr_name << " in the graph";std::shared_ptr<any> sptr = it->second;attrs.erase(it);if (sptr.unique()) {return std::move(nnvm::get<T>(*sptr));} else {return nnvm::get<T>(*sptr);}
}
从上述代码可以看到graph_attr._move_out_module(graph, "module")
访问的是一个tvm::runtime::Module的对象.但是还不清楚这个Module对象是如何生成的,所以需要继续看下去.
在NNVM代码工程中搜索attrs["module"]
得到如下代码:
/src/compiler/graph_fuse.cc
// 代码段位于GraphFuseCompile函数中static const PackedFunc& fbuild = GetPackedFunc("nnvm.compiler.build_target");
tvm::runtime::Module module = fbuild(func_list, target, target_host);
ret.attrs["module"] = std::make_shared<any>(std::move(module));
上述代码中fbuild函数是使用GetPackedFunc获得,根据深度学习编译中间件之NNVM(四)TVM设计理念与开发者指南中提到的,此处是使用了C++调用Python函数的方法.
通过全局搜索可以得到nnvm.compiler.build_target
的定义位于python/nnvm/build_module.py
:
@tvm.register_func("nnvm.compiler.build_target")
def _build(funcs, target, target_host):if target_host == "":target_host = Nonereturn tvm.build(funcs, target=target, target_host=target_host)
nnvm.compiler.build_target
调用了tvm.build
tvm.build
的定义位于tvm/python/tvm/build_module.py
,执行到这里表示对于整个编译过程而言已经完成了NNVM图优化的阶段,进入到TVM代码生成的阶段.
在介绍TVM具体的代码生成过程前,先了解NNVM传送给TVM进行代码生成的数据结构为:
Array<tvm::LoweredFunc> func_list;
// tvm::LoweredFunc数组
这个数据结构包含了被lower的TVM函数的相关信息,是代码生成前的最终数据结构(IR表示)。这里将介绍这个IR表示是如何生成的。
展示nnvm::Graph GraphFuseCompile函数中和lower相关的部分代码:
src/compiler/graph_fuse.cc
fe.compiled_func = GraphLower(fe.subgraph, inputs, target, sub_master_idx);
for (LoweredFunc f : fe.compiled_func->funcs) {if (!func_set.count(f.get())) {func_set.insert(f.get());func_list.push_back(f);}
}
src/compiler/compile_engine.cc
GraphFunc GraphLower(Graph graph,const Array<tvm::Tensor>& inputs,const std::string& target,int master_idx) {return CompileEngine::Global()->Lower(graph, inputs, target, master_idx);
}// CompileEngine::Global()->Lower最终调用了CompileEngine::DoLower函数
// run the actual lowering process
GraphFunc DoLower(Graph graph,const Array<tvm::Tensor>& inputs,const std::string& target,int master_idx) {std::string readable_name;Array<tvm::Tensor> all_args;Array<tvm::Tensor> outputs;Schedule sch;std::tie(sch, all_args, graph) = GetScheduleArgs(graph, inputs, target, master_idx,&readable_name, &outputs);std::shared_ptr<GraphFuncNode> gf = std::make_shared<GraphFuncNode>();gf->target = target;gf->func_name = GetUniqeName(readable_name);gf->inputs = inputs;gf->outputs = outputs;static const PackedFunc& flower = GetPackedFunc("nnvm.compiler.lower");gf->funcs = flower(sch, all_args, gf->func_name, graph);return GraphFunc(gf);
}// DoLower函数中比较重要的有两点
// 1. GetScheduleArgs函数用于生成Schedule参数
// 2. GetPackedFunc("nnvm.compiler.lower")重新调用了TVM的Python接口
GetScheduleArgs
函数定义位于src/compiler/compile_engine.cc
// get schedule and its argsstd::tuple<Schedule, Array<tvm::Tensor>, Graph>GetScheduleArgs(Graph graph,const Array<tvm::Tensor> &inputs,const std::string &target,int master_idx,std::string *readable_name,Array<tvm::Tensor> *outputs) {// shape, type// 获取TVM计算函数和TVM调度函数static auto& fcompute =nnvm::Op::GetAttr<FTVMCompute>("FTVMCompute");static auto& fschedule =nnvm::Op::GetAttr<FTVMSchedule>("FTVMSchedule");// 获取并设置输入Shape和类型std::vector<TShape> ishape;std::vector<int> idtype;for (const tvm::Tensor t : inputs) {std::vector<dim_t> shape;for (Expr v : t->shape) {CHECK(v.as<tvm::ir::IntImm>());shape.push_back(v.as<tvm::ir::IntImm>()->value);}ishape.emplace_back(TShape(shape.begin(), shape.end()));idtype.emplace_back(GetTypeFlag(t->dtype));}graph = pass::InferShape(graph, ishape);graph = pass::InferType(graph, idtype);const ShapeVector& shape_vec = graph.GetAttr<ShapeVector>("shape");const DTypeVector& dtype_vec = graph.GetAttr<DTypeVector>("dtype");const IndexedGraph& idx = graph.indexed_graph();CHECK_EQ(inputs.size(), idx.input_nodes().size());// 设置输入Tensorstd::vector<tvm::Tensor> tensor_vec(idx.num_node_entries());for (size_t i = 0; i < idx.input_nodes().size(); ++i) {uint32_t nid = idx.input_nodes()[i];tensor_vec[idx.entry_id(nid, 0)] = inputs[i];}std::ostringstream readable_name_os;readable_name_os << "fuse";for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) {const auto& inode = idx[nid];if (inode.source->is_variable()) continue;Array<Tensor> op_inputs, out_info;readable_name_os << "_" << inode.source->op()->name;// input arrayfor (const IndexedGraph::NodeEntry& e : inode.inputs) {const tvm::Tensor& t = tensor_vec[idx.entry_id(e)];CHECK(t.defined());op_inputs.push_back(t);}// output hintfor (uint32_t i = 0; i < inode.source->num_outputs(); ++i) {Array<Expr> shape;for (int64_t x : shape_vec[idx.entry_id(nid, i)]) {CHECK_LE(x, static_cast<int64_t>(std::numeric_limits<int>::max()));shape.push_back(make_const(Int(32), x));}out_info.push_back(placeholder(shape,GetTVMType(dtype_vec[idx.entry_id(nid, i)])));}// 运行一次op,输入数据随机Array<Tensor> out = fcompute[inode.source->op()](inode.source->attrs, op_inputs, out_info);CHECK_EQ(out.size(), inode.source->num_outputs());// schedule on root node, and use master's schedulefor (uint32_t index = 0; index < inode.source->num_outputs(); ++index) {uint32_t eid = idx.entry_id(nid, index);tensor_vec[eid] = out[index];}}// Schedule on final output.Array<Tensor> all_args = inputs;Array<Tensor> outs;for (const IndexedGraph::NodeEntry& e : idx.outputs()) {const tvm::Tensor& t = tensor_vec[idx.entry_id(e)];CHECK(t.defined());outs.push_back(t);all_args.push_back(t);}Schedule sch = fschedule[idx[master_idx].source->op()](idx[master_idx].source->attrs, outs, target);// store extra return valuesif (readable_name != nullptr) {*readable_name = readable_name_os.str();}if (outputs != nullptr) {*outputs = outs;}return std::make_tuple(sch, all_args, graph);}
nnvm.compiler.lower
的定义位于tvm/python/tvm/build_module.py
def lower(sch,args,name="default_function",binds=None,simple_mode=False):
TVM代码生成过程
这里先展示tvm.build
的部分代码:
if fdevice:mdev = codegen.build_module(fdevice, str(target_device))mhost.import_module(mdev)
return mhost
tvm.build
调用了codegen.build_module
方法,位于tvm/python/tvm/codegen.py
:
from ._ffi.function import _init_apidef build_module(lowered_func, target):"""Build lowered_func into Module.Parameters----------lowered_func : LoweredFuncThe lowered functiontarget : strThe target module type.Returns-------module : ModuleThe corressponding module."""return _Build(lowered_func, target)
codegen._Build
的定义位于tvm/src/api/api_codegen.cc
:
TVM_REGISTER_API("codegen._Build")
.set_body([](TVMArgs args, TVMRetValue *ret) {if (args[0].IsNodeType<LoweredFunc>()) {*ret = Build({args[0]}, args[1]);} else {*ret = Build(args[0], args[1]);}});
runtime::Module::Build
位于tvm/src/codegen/codegen.cc
:
runtime::Module Build(const Array<LoweredFunc>& funcs,const std::string& target) {std::string mode = target;size_t pos = mode.find(' ');if (pos != std::string::npos) {mode = mode.substr(0, pos);}std::string build_f_name = "codegen.build_" + mode;// the build function.const PackedFunc* bf = runtime::Registry::Get(build_f_name);CHECK(bf != nullptr)<< "Target " << target << " is not enabled";runtime::Module m = (*bf)(funcs, target);return m;
}
因为这里验证的ARM处理器,所以mode为llvm:
codegen.build_llvm
的定义位于tvm/src/codegen/llvm/llvm_module.cc
:
TVM_REGISTER_API("codegen.build_llvm")
.set_body([](TVMArgs args, TVMRetValue* rv) {std::shared_ptr<LLVMModuleNode> n = std::make_shared<LLVMModuleNode>();n->Init(args[0], args[1]);*rv = runtime::Module(n);
});
LLVMModuleNode::Init
的定义位于tvm/src/codegen/llvm/llvm_module.cc
:
void Init(const Array<LoweredFunc>& funcs, std::string target) {InitializeLLVM();tm_ = GetLLVMTargetMachine(target);bool system_lib = (target.find("-system-lib") != std::string::npos);CHECK_NE(funcs.size(), 0U);ctx_ = std::make_shared<llvm::LLVMContext>();std::unique_ptr<CodeGenLLVM> cg = CodeGenLLVM::Create(tm_);entry_func_ = funcs[0]->name;cg->Init(funcs[0]->name, tm_, ctx_.get(), system_lib, system_lib);for (LoweredFunc f : funcs) {cg->AddFunction(f);}cg->AddMainFunction(funcs[0]->name);module_ = cg->Finish();module_->addModuleFlag(llvm::Module::Warning, "tvm_target",llvm::MDString::get(*ctx_, target));target_ = target;mptr_ = module_.get();
}
LLVMModuleNode::Init
函数中和代码生成相关的主要代码调用接口为:
CodeGenLLVM::Create
CodeGenLLVM::Init
CodeGenLLVM::AddFunction
CodeGenLLVM::AddMainFunction
CodeGenLLVM::Finish/*!* \brief Compile and add function f to the current module.* \param f The function to be added.*/
virtual void AddFunction(const LoweredFunc& f);
CodeGenLLVM::AddFunction
即是负责编译每一个函数并添加到当前module的函数。
CodeGenLLVM::AddFunction
的定义位于tvm/src/codegen/llvm/codegen_llvm.cc
:
void CodeGenLLVM::AddFunction(const LoweredFunc& f) {this->AddFunctionInternal(f, false);
}void CodeGenLLVM::AddFunctionInternal(const LoweredFunc& f, bool ret_void) {this->InitFuncState();std::vector<llvm::Type*> arg_types;is_restricted_ = f->is_restricted;for (Var arg : f->args) {Type t = arg.type();if (t.is_handle()) {auto it = f->handle_data_type.find(arg);if (it != f->handle_data_type.end()) {arg_types.push_back(LLVMType((*it).second.type())->getPointerTo(GetGlobalAddressSpace()));} else {arg_types.push_back(t_int8_->getPointerTo(GetGlobalAddressSpace()));}if (!is_restricted_) {alias_var_set_.insert(arg.get());}} else {arg_types.push_back(LLVMType(arg.type()));}}llvm::FunctionType* ftype = llvm::FunctionType::get(ret_void ? t_void_ : t_int_, arg_types, false);CHECK(module_->getFunction(f->name) == nullptr)<< "Function " << f->name << " already exist in module";function_ = llvm::Function::Create(ftype, llvm::Function::ExternalLinkage,f->name, module_.get());function_->setCallingConv(llvm::CallingConv::C);function_->setDLLStorageClass(llvm::GlobalValue::DLLStorageClassTypes::DLLExportStorageClass);// set var map and align informationauto arg_it = function_->arg_begin();for (size_t i = 0; i < f->args.size(); ++i, ++arg_it) {llvm::Argument* v = &(*arg_it);const Var& var = f->args[i];var_map_[var.get()] = v;if (is_restricted_) {if (var.type().is_handle() && !alias_var_set_.count(var.get())) {// set non alias.
#if TVM_LLVM_VERSION >= 50function_->addParamAttr(i, llvm::Attribute::NoAlias);
#elsefunction_->setDoesNotAlias(i + 1);
#endif}}}llvm::BasicBlock* entry = llvm::BasicBlock::Create(*ctx_, "entry", function_);builder_->SetInsertPoint(entry);this->VisitStmt(f->body);if (ret_void) {builder_->CreateRetVoid();} else {builder_->CreateRet(ConstInt32(0));}
}
CodeGenLLVM::AddFunctionInternal
函数的主要内部实现细节为:
- 确定函数参数和返回值类型,以此确定函数类型
- 创建函数(llvm::Function::Create)
- 设置函数选项(调用约定、DLL存储类型)
- 填充函数参数
这篇关于深度学习编译中间件之NNVM(十二)NNVM源代码阅读1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!