Python代码实现:坐标轮换法求解多维最优化问题

2023-10-29 00:20

本文主要是介绍Python代码实现:坐标轮换法求解多维最优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 多维最优化问题
  • 坐标轮换法原理
  • 代码实现坐标轮换法
  • 坐标轮换法优缺点

多维最优化问题

此前介绍的黄金分割法和切线法都是针对一维最优化问题的解决方案。本文开始,我们将最优化问题从一维扩展到多维,暂时仍考虑无约束的优化场景。

坐标轮换法原理

问题维度扩展后,很容易想到的一个解决方案就是先将多维问题降维至一维,然后再使用之前的算法依次求解。坐标轮换法就是基于该思路所设计的一个算法,其实现流程(假设问题为2维最小化问题,更高维度可以直接类推)为

  1. 选取初始值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)
  2. 沿着 x x x轴搜索,得到局部最优解: x = x 0 + h x=x_0+h x=x0+h
  3. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,继续执行第4步。
  4. 沿着 y y y轴搜索,得到局部最优解: y = y 0 + t y=y_0+t y=y0+t
  5. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,跳转执行第2步。

其中,第2步和第4步中局部最优解的求解均为一维最优化问题,其计算过程为:先使用进退法确定搜索区间,然后在该区间使用黄金分割法计算最优解。

下图为坐标轮换法的示意图。

代码实现坐标轮换法

以下以二维函数的最小化问题为例,使用Python实现了坐标轮换法。挺尴尬的,代码水平有限,两个方向的计算,进退法和黄金分割法分别使用了两个函数,所以主要关注一下逻辑吧。当然了,这么差的水平,也没必要再用Java写一遍了,以后代码水平提升后再做补充。

# 待优化函数f
def f(x, y):return 2 * x**2 + 3 * y**2 - 8 * x + 10# 待优化函数g
def g(x, y):return 4 + 4.5 * x - 4 * y + x * x + 2 * y * y - 2 * x * y + x**4 - 2 * x * x * y# 进退法:确定搜索区间,x方向
def advance_and_retreat_x(func, x, y, h):if abs(func(x, y) - func(x + h, y)) <= 1e-6:# 第三种情况x_min, x_max = x, x + helif func(x, y) < func(x + h, y):# 第一种情况x_max = x + hlamb = 1while func(x - lamb * h, y) < func(x, y):lamb += 1x_min = x - lamb * helse:# 第二组情况x_min = x + hlamb = 2while func(x + lamb * h, y) < func(x + h, y):lamb += 1x_max = x + lamb * hreturn x_min, x_max# 进退法:确定搜索区间,y方向
def advance_and_retreat_y(func, x, y, h):if abs(func(x, y) - func(x, y + h)) <= 1e-6:# 第三种情况y_min, y_max = y, y + helif func(x, y) < func(x, y + h):# 第一种情况y_max = y + hlamb = 1while func(x, y - lamb * h) < func(x, y):lamb += 1y_min = y - lamb * helse:# 第二组情况y_min = y + hlamb = 2while func(x, y + lamb * h) < func(x, y + h):lamb += 1y_max = y + lamb * hreturn y_min, y_max# 黄金分割法,求解x方向最优解
def golden_section_x(func, a, b, y, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(c, y) < func(d, y):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func((a + b) / 2, y), cnt# 黄金分割法,求解y方向最优解
def golden_section_y(func, a, b, x, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(x, c) < func(x, d):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func(x, (a + b) / 2), cnt# 坐标轮换法
def univariate_search(func, x, y, eps):# 打印初始值对应的解cur_best_f = func(x, y)iters = 0print('iter: {}, best_x: {}, best_y: {}, function calc: {}'.format(iters, x, y, cur_best_f))# 坐标轮换优化while True:iters += 1# x方向优化x_min, x_max = advance_and_retreat_x(func, x, y, 0.1)best_x, best_f, _ = golden_section_x(func, x_min, x_max, y, eps)print('iter_x: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, best_x, y, best_f))x = best_x# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_f# y方向优化y_min, y_max = advance_and_retreat_y(func, x, y, 0.1)best_y, best_f, _ = golden_section_y(func, y_min, y_max, x, eps)print('iter_y: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, x, best_y, best_f))y = best_y# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_freturn func(x, y)if __name__ == '__main__':# 实例fx_f, y_f, eps_f = 1, 2, 1e-3# 坐标轮换法计算最优解univariate_search(f, x_f, y_f, eps_f)print("===========================")# 实例gx_g, y_g, eps_g = -2, 2.2, 1e-3# 坐标轮换法计算最优解univariate_search(g, x_g, y_g, eps_g)

运行代码后,可以得到

iter: 0, best_x: 1, best_y: 2, function calc: 16
iter_x: 1, best_x: 2.000233763452192, best_y: 2, best_f: 14.000000109290703
iter_y: 1, best_x: 2.000233763452192, best_y: 0.00015399075125497154, best_f: 2.000000180430158
iter_x: 2, best_x: 1.9998462973783453, best_y: 0.00015399075125497154, best_f: 2.0000001183884457
===========================
iter: 0, best_x: -2, best_y: 2.2, function calc: 7.079999999999998
iter_x: 1, best_x: -1.311255594408947, best_y: 2.2, best_f: 1.8592504605100588
iter_y: 1, best_x: -1.311255594408947, best_y: 1.2040230144759103, best_f: -0.12451135087000331
iter_x: 2, best_x: -1.088311474688541, best_y: 1.2040230144759103, best_f: -0.45831207876525415
iter_y: 2, best_x: -1.088311474688541, best_y: 1.048100675705184, best_f: -0.5069639956625354
iter_x: 3, best_x: -1.0568821019967993, best_y: 1.048100675705184, best_f: -0.512672581153325
iter_y: 3, best_x: -1.0568821019967993, best_y: 1.0300634221854548, best_f: -0.5133235969440142

上述两个实例分别来源于实例1和实例2。对比原文的结果可知,最终结果都是吻合的,即本文的算法原理和代码实现是没有问题的。

坐标轮换法优缺点

针对多维最优化问题来说,坐标轮换法应该是非常容易理解和实现的解决方案。虽然文中的代码上不了台面,但是总归是比较容易实现的,而且全程只需要计算目标函数本身,并未引入导数等其他信息,所以计算速度非常快。

坐标轮换法的主要缺点是收敛效率很难保证。这里借网上大佬做的一张图来说明。以下三种为三类最优化问题的等高线图:针对第1种类型的问题,坐标轮换法在2次迭代后便得到了最优解;针对第2种类型的问题,6次迭代可以得到最优解;针对第三种类型的问题,坐标轮换法不收敛,无法得不到最优解。

这篇关于Python代码实现:坐标轮换法求解多维最优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296974

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,