Python代码实现:坐标轮换法求解多维最优化问题

2023-10-29 00:20

本文主要是介绍Python代码实现:坐标轮换法求解多维最优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 多维最优化问题
  • 坐标轮换法原理
  • 代码实现坐标轮换法
  • 坐标轮换法优缺点

多维最优化问题

此前介绍的黄金分割法和切线法都是针对一维最优化问题的解决方案。本文开始,我们将最优化问题从一维扩展到多维,暂时仍考虑无约束的优化场景。

坐标轮换法原理

问题维度扩展后,很容易想到的一个解决方案就是先将多维问题降维至一维,然后再使用之前的算法依次求解。坐标轮换法就是基于该思路所设计的一个算法,其实现流程(假设问题为2维最小化问题,更高维度可以直接类推)为

  1. 选取初始值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)
  2. 沿着 x x x轴搜索,得到局部最优解: x = x 0 + h x=x_0+h x=x0+h
  3. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,继续执行第4步。
  4. 沿着 y y y轴搜索,得到局部最优解: y = y 0 + t y=y_0+t y=y0+t
  5. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,跳转执行第2步。

其中,第2步和第4步中局部最优解的求解均为一维最优化问题,其计算过程为:先使用进退法确定搜索区间,然后在该区间使用黄金分割法计算最优解。

下图为坐标轮换法的示意图。

代码实现坐标轮换法

以下以二维函数的最小化问题为例,使用Python实现了坐标轮换法。挺尴尬的,代码水平有限,两个方向的计算,进退法和黄金分割法分别使用了两个函数,所以主要关注一下逻辑吧。当然了,这么差的水平,也没必要再用Java写一遍了,以后代码水平提升后再做补充。

# 待优化函数f
def f(x, y):return 2 * x**2 + 3 * y**2 - 8 * x + 10# 待优化函数g
def g(x, y):return 4 + 4.5 * x - 4 * y + x * x + 2 * y * y - 2 * x * y + x**4 - 2 * x * x * y# 进退法:确定搜索区间,x方向
def advance_and_retreat_x(func, x, y, h):if abs(func(x, y) - func(x + h, y)) <= 1e-6:# 第三种情况x_min, x_max = x, x + helif func(x, y) < func(x + h, y):# 第一种情况x_max = x + hlamb = 1while func(x - lamb * h, y) < func(x, y):lamb += 1x_min = x - lamb * helse:# 第二组情况x_min = x + hlamb = 2while func(x + lamb * h, y) < func(x + h, y):lamb += 1x_max = x + lamb * hreturn x_min, x_max# 进退法:确定搜索区间,y方向
def advance_and_retreat_y(func, x, y, h):if abs(func(x, y) - func(x, y + h)) <= 1e-6:# 第三种情况y_min, y_max = y, y + helif func(x, y) < func(x, y + h):# 第一种情况y_max = y + hlamb = 1while func(x, y - lamb * h) < func(x, y):lamb += 1y_min = y - lamb * helse:# 第二组情况y_min = y + hlamb = 2while func(x, y + lamb * h) < func(x, y + h):lamb += 1y_max = y + lamb * hreturn y_min, y_max# 黄金分割法,求解x方向最优解
def golden_section_x(func, a, b, y, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(c, y) < func(d, y):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func((a + b) / 2, y), cnt# 黄金分割法,求解y方向最优解
def golden_section_y(func, a, b, x, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(x, c) < func(x, d):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func(x, (a + b) / 2), cnt# 坐标轮换法
def univariate_search(func, x, y, eps):# 打印初始值对应的解cur_best_f = func(x, y)iters = 0print('iter: {}, best_x: {}, best_y: {}, function calc: {}'.format(iters, x, y, cur_best_f))# 坐标轮换优化while True:iters += 1# x方向优化x_min, x_max = advance_and_retreat_x(func, x, y, 0.1)best_x, best_f, _ = golden_section_x(func, x_min, x_max, y, eps)print('iter_x: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, best_x, y, best_f))x = best_x# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_f# y方向优化y_min, y_max = advance_and_retreat_y(func, x, y, 0.1)best_y, best_f, _ = golden_section_y(func, y_min, y_max, x, eps)print('iter_y: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, x, best_y, best_f))y = best_y# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_freturn func(x, y)if __name__ == '__main__':# 实例fx_f, y_f, eps_f = 1, 2, 1e-3# 坐标轮换法计算最优解univariate_search(f, x_f, y_f, eps_f)print("===========================")# 实例gx_g, y_g, eps_g = -2, 2.2, 1e-3# 坐标轮换法计算最优解univariate_search(g, x_g, y_g, eps_g)

运行代码后,可以得到

iter: 0, best_x: 1, best_y: 2, function calc: 16
iter_x: 1, best_x: 2.000233763452192, best_y: 2, best_f: 14.000000109290703
iter_y: 1, best_x: 2.000233763452192, best_y: 0.00015399075125497154, best_f: 2.000000180430158
iter_x: 2, best_x: 1.9998462973783453, best_y: 0.00015399075125497154, best_f: 2.0000001183884457
===========================
iter: 0, best_x: -2, best_y: 2.2, function calc: 7.079999999999998
iter_x: 1, best_x: -1.311255594408947, best_y: 2.2, best_f: 1.8592504605100588
iter_y: 1, best_x: -1.311255594408947, best_y: 1.2040230144759103, best_f: -0.12451135087000331
iter_x: 2, best_x: -1.088311474688541, best_y: 1.2040230144759103, best_f: -0.45831207876525415
iter_y: 2, best_x: -1.088311474688541, best_y: 1.048100675705184, best_f: -0.5069639956625354
iter_x: 3, best_x: -1.0568821019967993, best_y: 1.048100675705184, best_f: -0.512672581153325
iter_y: 3, best_x: -1.0568821019967993, best_y: 1.0300634221854548, best_f: -0.5133235969440142

上述两个实例分别来源于实例1和实例2。对比原文的结果可知,最终结果都是吻合的,即本文的算法原理和代码实现是没有问题的。

坐标轮换法优缺点

针对多维最优化问题来说,坐标轮换法应该是非常容易理解和实现的解决方案。虽然文中的代码上不了台面,但是总归是比较容易实现的,而且全程只需要计算目标函数本身,并未引入导数等其他信息,所以计算速度非常快。

坐标轮换法的主要缺点是收敛效率很难保证。这里借网上大佬做的一张图来说明。以下三种为三类最优化问题的等高线图:针对第1种类型的问题,坐标轮换法在2次迭代后便得到了最优解;针对第2种类型的问题,6次迭代可以得到最优解;针对第三种类型的问题,坐标轮换法不收敛,无法得不到最优解。

这篇关于Python代码实现:坐标轮换法求解多维最优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296974

相关文章

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解