Python代码实现:坐标轮换法求解多维最优化问题

2023-10-29 00:20

本文主要是介绍Python代码实现:坐标轮换法求解多维最优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 多维最优化问题
  • 坐标轮换法原理
  • 代码实现坐标轮换法
  • 坐标轮换法优缺点

多维最优化问题

此前介绍的黄金分割法和切线法都是针对一维最优化问题的解决方案。本文开始,我们将最优化问题从一维扩展到多维,暂时仍考虑无约束的优化场景。

坐标轮换法原理

问题维度扩展后,很容易想到的一个解决方案就是先将多维问题降维至一维,然后再使用之前的算法依次求解。坐标轮换法就是基于该思路所设计的一个算法,其实现流程(假设问题为2维最小化问题,更高维度可以直接类推)为

  1. 选取初始值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)
  2. 沿着 x x x轴搜索,得到局部最优解: x = x 0 + h x=x_0+h x=x0+h
  3. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,继续执行第4步。
  4. 沿着 y y y轴搜索,得到局部最优解: y = y 0 + t y=y_0+t y=y0+t
  5. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,跳转执行第2步。

其中,第2步和第4步中局部最优解的求解均为一维最优化问题,其计算过程为:先使用进退法确定搜索区间,然后在该区间使用黄金分割法计算最优解。

下图为坐标轮换法的示意图。

代码实现坐标轮换法

以下以二维函数的最小化问题为例,使用Python实现了坐标轮换法。挺尴尬的,代码水平有限,两个方向的计算,进退法和黄金分割法分别使用了两个函数,所以主要关注一下逻辑吧。当然了,这么差的水平,也没必要再用Java写一遍了,以后代码水平提升后再做补充。

# 待优化函数f
def f(x, y):return 2 * x**2 + 3 * y**2 - 8 * x + 10# 待优化函数g
def g(x, y):return 4 + 4.5 * x - 4 * y + x * x + 2 * y * y - 2 * x * y + x**4 - 2 * x * x * y# 进退法:确定搜索区间,x方向
def advance_and_retreat_x(func, x, y, h):if abs(func(x, y) - func(x + h, y)) <= 1e-6:# 第三种情况x_min, x_max = x, x + helif func(x, y) < func(x + h, y):# 第一种情况x_max = x + hlamb = 1while func(x - lamb * h, y) < func(x, y):lamb += 1x_min = x - lamb * helse:# 第二组情况x_min = x + hlamb = 2while func(x + lamb * h, y) < func(x + h, y):lamb += 1x_max = x + lamb * hreturn x_min, x_max# 进退法:确定搜索区间,y方向
def advance_and_retreat_y(func, x, y, h):if abs(func(x, y) - func(x, y + h)) <= 1e-6:# 第三种情况y_min, y_max = y, y + helif func(x, y) < func(x, y + h):# 第一种情况y_max = y + hlamb = 1while func(x, y - lamb * h) < func(x, y):lamb += 1y_min = y - lamb * helse:# 第二组情况y_min = y + hlamb = 2while func(x, y + lamb * h) < func(x, y + h):lamb += 1y_max = y + lamb * hreturn y_min, y_max# 黄金分割法,求解x方向最优解
def golden_section_x(func, a, b, y, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(c, y) < func(d, y):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func((a + b) / 2, y), cnt# 黄金分割法,求解y方向最优解
def golden_section_y(func, a, b, x, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(x, c) < func(x, d):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func(x, (a + b) / 2), cnt# 坐标轮换法
def univariate_search(func, x, y, eps):# 打印初始值对应的解cur_best_f = func(x, y)iters = 0print('iter: {}, best_x: {}, best_y: {}, function calc: {}'.format(iters, x, y, cur_best_f))# 坐标轮换优化while True:iters += 1# x方向优化x_min, x_max = advance_and_retreat_x(func, x, y, 0.1)best_x, best_f, _ = golden_section_x(func, x_min, x_max, y, eps)print('iter_x: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, best_x, y, best_f))x = best_x# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_f# y方向优化y_min, y_max = advance_and_retreat_y(func, x, y, 0.1)best_y, best_f, _ = golden_section_y(func, y_min, y_max, x, eps)print('iter_y: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, x, best_y, best_f))y = best_y# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_freturn func(x, y)if __name__ == '__main__':# 实例fx_f, y_f, eps_f = 1, 2, 1e-3# 坐标轮换法计算最优解univariate_search(f, x_f, y_f, eps_f)print("===========================")# 实例gx_g, y_g, eps_g = -2, 2.2, 1e-3# 坐标轮换法计算最优解univariate_search(g, x_g, y_g, eps_g)

运行代码后,可以得到

iter: 0, best_x: 1, best_y: 2, function calc: 16
iter_x: 1, best_x: 2.000233763452192, best_y: 2, best_f: 14.000000109290703
iter_y: 1, best_x: 2.000233763452192, best_y: 0.00015399075125497154, best_f: 2.000000180430158
iter_x: 2, best_x: 1.9998462973783453, best_y: 0.00015399075125497154, best_f: 2.0000001183884457
===========================
iter: 0, best_x: -2, best_y: 2.2, function calc: 7.079999999999998
iter_x: 1, best_x: -1.311255594408947, best_y: 2.2, best_f: 1.8592504605100588
iter_y: 1, best_x: -1.311255594408947, best_y: 1.2040230144759103, best_f: -0.12451135087000331
iter_x: 2, best_x: -1.088311474688541, best_y: 1.2040230144759103, best_f: -0.45831207876525415
iter_y: 2, best_x: -1.088311474688541, best_y: 1.048100675705184, best_f: -0.5069639956625354
iter_x: 3, best_x: -1.0568821019967993, best_y: 1.048100675705184, best_f: -0.512672581153325
iter_y: 3, best_x: -1.0568821019967993, best_y: 1.0300634221854548, best_f: -0.5133235969440142

上述两个实例分别来源于实例1和实例2。对比原文的结果可知,最终结果都是吻合的,即本文的算法原理和代码实现是没有问题的。

坐标轮换法优缺点

针对多维最优化问题来说,坐标轮换法应该是非常容易理解和实现的解决方案。虽然文中的代码上不了台面,但是总归是比较容易实现的,而且全程只需要计算目标函数本身,并未引入导数等其他信息,所以计算速度非常快。

坐标轮换法的主要缺点是收敛效率很难保证。这里借网上大佬做的一张图来说明。以下三种为三类最优化问题的等高线图:针对第1种类型的问题,坐标轮换法在2次迭代后便得到了最优解;针对第2种类型的问题,6次迭代可以得到最优解;针对第三种类型的问题,坐标轮换法不收敛,无法得不到最优解。

这篇关于Python代码实现:坐标轮换法求解多维最优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296974

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控