一次spark sql 优化的经历: SparkException: Job aborted / spark.yarn.executor.memoryOverhead

本文主要是介绍一次spark sql 优化的经历: SparkException: Job aborted / spark.yarn.executor.memoryOverhead,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题背景

某天 跑 sparkSQL 的时候,遇到报错:
org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter . w r i t e ( F i l e F o r m a t W r i t e r . s c a l a : 198 ) a t o r g . a p a c h e . s p a r k . s q l . h i v e . e x e c u t i o n . S a v e A s H i v e F i l e .write(FileFormatWriter.scala:198) at org.apache.spark.sql.hive.execution.SaveAsHiveFile .write(FileFormatWriter.scala:198)atorg.apache.spark.sql.hive.execution.SaveAsHiveFileclass.saveAsHiveFile(SaveAsHiveFile.scala:86)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.saveAsHiveFile(InsertIntoHiveTable.scala:66)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.processInsert(InsertIntoHiveTable.scala:195)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:99)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult l z y c o m p u t e ( c o m m a n d s . s c a l a : 104 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . c o m m a n d . D a t a W r i t i n g C o m m a n d E x e c . s i d e E f f e c t R e s u l t ( c o m m a n d s . s c a l a : 102 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . c o m m a n d . D a t a W r i t i n g C o m m a n d E x e c . e x e c u t e C o l l e c t ( c o m m a n d s . s c a l a : 115 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t lzycompute(commands.scala:104) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102) at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:115) at org.apache.spark.sql.Dataset lzycompute(commands.scala:104)atorg.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)atorg.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:115)atorg.apache.spark.sql.Dataset$anonfun 6. a p p l y ( D a t a s e t . s c a l a : 194 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t 6.apply(Dataset.scala:194) at org.apache.spark.sql.Dataset 6.apply(Dataset.scala:194)atorg.apache.spark.sql.Dataset$anonfun 6. a p p l y ( D a t a s e t . s c a l a : 194 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t 6.apply(Dataset.scala:194) at org.apache.spark.sql.Dataset 6.apply(Dataset.scala:194)atorg.apache.spark.sql.Dataset$anonfun 52. a p p l y ( D a t a s e t . s c a l a : 3370 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . S Q L E x e c u t i o n 52.apply(Dataset.scala:3370) at org.apache.spark.sql.execution.SQLExecution 52.apply(Dataset.scala:3370)atorg.apache.spark.sql.execution.SQLExecution a n o n f u n anonfun anonfunwithNewExecutionId 1. a p p l y ( S Q L E x e c u t i o n . s c a l a : 80 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . S Q L E x e c u t i o n 1.apply(SQLExecution.scala:80) at org.apache.spark.sql.execution.SQLExecution 1.apply(SQLExecution.scala:80)atorg.apache.spark.sql.execution.SQLExecution.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution . w i t h N e w E x e c u t i o n I d ( S Q L E x e c u t i o n . s c a l a : 75 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t . o r g .withNewExecutionId(SQLExecution.scala:75) at org.apache.spark.sql.Dataset.org .withNewExecutionId(SQLExecution.scala:75)atorg.apache.spark.sql.Dataset.orgapache s p a r k spark sparksql D a t a s e t Dataset Dataset w i t h A c t i o n ( D a t a s e t . s c a l a : 3369 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t . < i n i t > ( D a t a s e t . s c a l a : 194 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t withAction(Dataset.scala:3369) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:194) at org.apache.spark.sql.Dataset withAction(Dataset.scala:3369)atorg.apache.spark.sql.Dataset.<init>(Dataset.scala:194)atorg.apache.spark.sql.Dataset.ofRows(Dataset.scala:79)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:643)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:694)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:62)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:371)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver . m a i n ( S p a r k S Q L C L I D r i v e r . s c a l a : 274 ) a t o r g . a p a c h e . s p a r k . s q l . h i v e . t h r i f t s e r v e r . S p a r k S Q L C L I D r i v e r . m a i n ( S p a r k S Q L C L I D r i v e r . s c a l a ) a t s u n . r e f l e c t . N a t i v e M e t h o d A c c e s s o r I m p l . i n v o k e 0 ( N a t i v e M e t h o d ) a t s u n . r e f l e c t . N a t i v e M e t h o d A c c e s s o r I m p l . i n v o k e ( N a t i v e M e t h o d A c c e s s o r I m p l . j a v a : 62 ) a t s u n . r e f l e c t . D e l e g a t i n g M e t h o d A c c e s s o r I m p l . i n v o k e ( D e l e g a t i n g M e t h o d A c c e s s o r I m p l . j a v a : 43 ) a t j a v a . l a n g . r e f l e c t . M e t h o d . i n v o k e ( M e t h o d . j a v a : 498 ) a t o r g . a p a c h e . s p a r k . d e p l o y . J a v a M a i n A p p l i c a t i o n . s t a r t ( S p a r k A p p l i c a t i o n . s c a l a : 52 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t . o r g .main(SparkSQLCLIDriver.scala:274) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52) at org.apache.spark.deploy.SparkSubmit.org .main(SparkSQLCLIDriver.scala:274)atorg.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)atsun.reflect.NativeMethodAccessorImpl.invoke0(NativeMethod)atsun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)atsun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)atjava.lang.reflect.Method.invoke(Method.java:498)atorg.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)atorg.apache.spark.deploy.SparkSubmit.orgapache s p a r k spark sparkdeploy S p a r k S u b m i t SparkSubmit SparkSubmit$runMain(SparkSubmit.scala:845)
at org.apache.spark.deploy.SparkSubmit.doRunMain 1 ( S p a r k S u b m i t . s c a l a : 161 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t . s u b m i t ( S p a r k S u b m i t . s c a l a : 184 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t . d o S u b m i t ( S p a r k S u b m i t . s c a l a : 86 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t 1(SparkSubmit.scala:161) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:184) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86) at org.apache.spark.deploy.SparkSubmit 1(SparkSubmit.scala:161)atorg.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:184)atorg.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)atorg.apache.spark.deploy.SparkSubmit$anon 2. d o S u b m i t ( S p a r k S u b m i t . s c a l a : 920 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t 2.doSubmit(SparkSubmit.scala:920) at org.apache.spark.deploy.SparkSubmit 2.doSubmit(SparkSubmit.scala:920)atorg.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala:929)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 6 in stage 16.0 failed 4 times, most recent failure: Lost task 6.3 in stage 16.0 (TID 478, idc-sql-dms-13, executor 40): ExecutorLostFailure (executor 40 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 11.8 GB of 11 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead or disabling yarn.nodemanager.vmem-check-enabled because of YARN-4714.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org a p a c h e apache apachespark s c h e d u l e r scheduler schedulerDAGScheduler f a i l J o b A n d I n d e p e n d e n t S t a g e s ( D A G S c h e d u l e r . s c a l a : 1925 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r failJobAndIndependentStages(DAGScheduler.scala:1925) at org.apache.spark.scheduler.DAGScheduler failJobAndIndependentStages(DAGScheduler.scala:1925)atorg.apache.spark.scheduler.DAGScheduleranonfun$abortStage 1. a p p l y ( D A G S c h e d u l e r . s c a l a : 1913 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r 1.apply(DAGScheduler.scala:1913) at org.apache.spark.scheduler.DAGScheduler 1.apply(DAGScheduler.scala:1913)atorg.apache.spark.scheduler.DAGScheduler a n o n f u n anonfun anonfunabortStage 1. a p p l y ( D A G S c h e d u l e r . s c a l a : 1912 ) a t s c a l a . c o l l e c t i o n . m u t a b l e . R e s i z a b l e A r r a y 1.apply(DAGScheduler.scala:1912) at scala.collection.mutable.ResizableArray 1.apply(DAGScheduler.scala:1912)atscala.collection.mutable.ResizableArrayclass.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1912)
at org.apache.spark.scheduler.DAGSchedulerKaTeX parse error: Can't use function '$' in math mode at position 8: anonfun$̲handleTaskSetFa…anonfun$handleTaskSetFailed 1. a p p l y ( D A G S c h e d u l e r . s c a l a : 948 ) a t s c a l a . O p t i o n . f o r e a c h ( O p t i o n . s c a l a : 257 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r . h a n d l e T a s k S e t F a i l e d ( D A G S c h e d u l e r . s c a l a : 948 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r E v e n t P r o c e s s L o o p . d o O n R e c e i v e ( D A G S c h e d u l e r . s c a l a : 2146 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r E v e n t P r o c e s s L o o p . o n R e c e i v e ( D A G S c h e d u l e r . s c a l a : 2095 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r E v e n t P r o c e s s L o o p . o n R e c e i v e ( D A G S c h e d u l e r . s c a l a : 2084 ) a t o r g . a p a c h e . s p a r k . u t i l . E v e n t L o o p 1.apply(DAGScheduler.scala:948) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084) at org.apache.spark.util.EventLoop 1.apply(DAGScheduler.scala:948)atscala.Option.foreach(Option.scala:257)atorg.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948)atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146)atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095)atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084)atorg.apache.spark.util.EventLoop$anon 1. r u n ( E v e n t L o o p . s c a l a : 49 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r . r u n J o b ( D A G S c h e d u l e r . s c a l a : 759 ) a t o r g . a p a c h e . s p a r k . S p a r k C o n t e x t . r u n J o b ( S p a r k C o n t e x t . s c a l a : 2061 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . d a t a s o u r c e s . F i l e F o r m a t W r i t e r 1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061) at org.apache.spark.sql.execution.datasources.FileFormatWriter 1.run(EventLoop.scala:49)atorg.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759)atorg.apache.spark.SparkContext.runJob(SparkContext.scala:2061)atorg.apache.spark.sql.execution.datasources.FileFormatWriter.write(FileFormatWriter.scala:167)
… 35 more
org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter . w r i t e ( F i l e F o r m a t W r i t e r . s c a l a : 198 ) a t o r g . a p a c h e . s p a r k . s q l . h i v e . e x e c u t i o n . S a v e A s H i v e F i l e .write(FileFormatWriter.scala:198) at org.apache.spark.sql.hive.execution.SaveAsHiveFile .write(FileFormatWriter.scala:198)atorg.apache.spark.sql.hive.execution.SaveAsHiveFileclass.saveAsHiveFile(SaveAsHiveFile.scala:86)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.saveAsHiveFile(InsertIntoHiveTable.scala:66)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.processInsert(InsertIntoHiveTable.scala:195)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:99)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult l z y c o m p u t e ( c o m m a n d s . s c a l a : 104 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . c o m m a n d . D a t a W r i t i n g C o m m a n d E x e c . s i d e E f f e c t R e s u l t ( c o m m a n d s . s c a l a : 102 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . c o m m a n d . D a t a W r i t i n g C o m m a n d E x e c . e x e c u t e C o l l e c t ( c o m m a n d s . s c a l a : 115 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t lzycompute(commands.scala:104) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102) at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:115) at org.apache.spark.sql.Dataset lzycompute(commands.scala:104)atorg.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)atorg.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:115)atorg.apache.spark.sql.Dataset$anonfun 6. a p p l y ( D a t a s e t . s c a l a : 194 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t 6.apply(Dataset.scala:194) at org.apache.spark.sql.Dataset 6.apply(Dataset.scala:194)atorg.apache.spark.sql.Dataset$anonfun 6. a p p l y ( D a t a s e t . s c a l a : 194 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t 6.apply(Dataset.scala:194) at org.apache.spark.sql.Dataset 6.apply(Dataset.scala:194)atorg.apache.spark.sql.Dataset$anonfun 52. a p p l y ( D a t a s e t . s c a l a : 3370 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . S Q L E x e c u t i o n 52.apply(Dataset.scala:3370) at org.apache.spark.sql.execution.SQLExecution 52.apply(Dataset.scala:3370)atorg.apache.spark.sql.execution.SQLExecution a n o n f u n anonfun anonfunwithNewExecutionId 1. a p p l y ( S Q L E x e c u t i o n . s c a l a : 80 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . S Q L E x e c u t i o n 1.apply(SQLExecution.scala:80) at org.apache.spark.sql.execution.SQLExecution 1.apply(SQLExecution.scala:80)atorg.apache.spark.sql.execution.SQLExecution.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution . w i t h N e w E x e c u t i o n I d ( S Q L E x e c u t i o n . s c a l a : 75 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t . o r g .withNewExecutionId(SQLExecution.scala:75) at org.apache.spark.sql.Dataset.org .withNewExecutionId(SQLExecution.scala:75)atorg.apache.spark.sql.Dataset.orgapache s p a r k spark sparksql D a t a s e t Dataset Dataset w i t h A c t i o n ( D a t a s e t . s c a l a : 3369 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t . < i n i t > ( D a t a s e t . s c a l a : 194 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t withAction(Dataset.scala:3369) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:194) at org.apache.spark.sql.Dataset withAction(Dataset.scala:3369)atorg.apache.spark.sql.Dataset.<init>(Dataset.scala:194)atorg.apache.spark.sql.Dataset.ofRows(Dataset.scala:79)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:643)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:694)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:62)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:371)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver . m a i n ( S p a r k S Q L C L I D r i v e r . s c a l a : 274 ) a t o r g . a p a c h e . s p a r k . s q l . h i v e . t h r i f t s e r v e r . S p a r k S Q L C L I D r i v e r . m a i n ( S p a r k S Q L C L I D r i v e r . s c a l a ) a t s u n . r e f l e c t . N a t i v e M e t h o d A c c e s s o r I m p l . i n v o k e 0 ( N a t i v e M e t h o d ) a t s u n . r e f l e c t . N a t i v e M e t h o d A c c e s s o r I m p l . i n v o k e ( N a t i v e M e t h o d A c c e s s o r I m p l . j a v a : 62 ) a t s u n . r e f l e c t . D e l e g a t i n g M e t h o d A c c e s s o r I m p l . i n v o k e ( D e l e g a t i n g M e t h o d A c c e s s o r I m p l . j a v a : 43 ) a t j a v a . l a n g . r e f l e c t . M e t h o d . i n v o k e ( M e t h o d . j a v a : 498 ) a t o r g . a p a c h e . s p a r k . d e p l o y . J a v a M a i n A p p l i c a t i o n . s t a r t ( S p a r k A p p l i c a t i o n . s c a l a : 52 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t . o r g .main(SparkSQLCLIDriver.scala:274) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52) at org.apache.spark.deploy.SparkSubmit.org .main(SparkSQLCLIDriver.scala:274)atorg.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)atsun.reflect.NativeMethodAccessorImpl.invoke0(NativeMethod)atsun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)atsun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)atjava.lang.reflect.Method.invoke(Method.java:498)atorg.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)atorg.apache.spark.deploy.SparkSubmit.orgapache s p a r k spark sparkdeploy S p a r k S u b m i t SparkSubmit SparkSubmit$runMain(SparkSubmit.scala:845)
at org.apache.spark.deploy.SparkSubmit.doRunMain 1 ( S p a r k S u b m i t . s c a l a : 161 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t . s u b m i t ( S p a r k S u b m i t . s c a l a : 184 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t . d o S u b m i t ( S p a r k S u b m i t . s c a l a : 86 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t 1(SparkSubmit.scala:161) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:184) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86) at org.apache.spark.deploy.SparkSubmit 1(SparkSubmit.scala:161)atorg.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:184)atorg.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86)atorg.apache.spark.deploy.SparkSubmit$anon 2. d o S u b m i t ( S p a r k S u b m i t . s c a l a : 920 ) a t o r g . a p a c h e . s p a r k . d e p l o y . S p a r k S u b m i t 2.doSubmit(SparkSubmit.scala:920) at org.apache.spark.deploy.SparkSubmit 2.doSubmit(SparkSubmit.scala:920)atorg.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala:929)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 6 in stage 16.0 failed 4 times, most recent failure: Lost task 6.3 in stage 16.0 (TID 478, idc-sql-dms-13, executor 40): ExecutorLostFailure (executor 40 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 11.8 GB of 11 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead or disabling yarn.nodemanager.vmem-check-enabled because of YARN-4714.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org a p a c h e apache apachespark s c h e d u l e r scheduler schedulerDAGScheduler f a i l J o b A n d I n d e p e n d e n t S t a g e s ( D A G S c h e d u l e r . s c a l a : 1925 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r failJobAndIndependentStages(DAGScheduler.scala:1925) at org.apache.spark.scheduler.DAGScheduler failJobAndIndependentStages(DAGScheduler.scala:1925)atorg.apache.spark.scheduler.DAGScheduleranonfun$abortStage 1. a p p l y ( D A G S c h e d u l e r . s c a l a : 1913 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r 1.apply(DAGScheduler.scala:1913) at org.apache.spark.scheduler.DAGScheduler 1.apply(DAGScheduler.scala:1913)atorg.apache.spark.scheduler.DAGScheduler a n o n f u n anonfun anonfunabortStage 1. a p p l y ( D A G S c h e d u l e r . s c a l a : 1912 ) a t s c a l a . c o l l e c t i o n . m u t a b l e . R e s i z a b l e A r r a y 1.apply(DAGScheduler.scala:1912) at scala.collection.mutable.ResizableArray 1.apply(DAGScheduler.scala:1912)atscala.collection.mutable.ResizableArrayclass.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1912)
at org.apache.spark.scheduler.DAGSchedulerKaTeX parse error: Can't use function '$' in math mode at position 8: anonfun$̲handleTaskSetFa…anonfun$handleTaskSetFailed 1. a p p l y ( D A G S c h e d u l e r . s c a l a : 948 ) a t s c a l a . O p t i o n . f o r e a c h ( O p t i o n . s c a l a : 257 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r . h a n d l e T a s k S e t F a i l e d ( D A G S c h e d u l e r . s c a l a : 948 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r E v e n t P r o c e s s L o o p . d o O n R e c e i v e ( D A G S c h e d u l e r . s c a l a : 2146 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r E v e n t P r o c e s s L o o p . o n R e c e i v e ( D A G S c h e d u l e r . s c a l a : 2095 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r E v e n t P r o c e s s L o o p . o n R e c e i v e ( D A G S c h e d u l e r . s c a l a : 2084 ) a t o r g . a p a c h e . s p a r k . u t i l . E v e n t L o o p 1.apply(DAGScheduler.scala:948) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084) at org.apache.spark.util.EventLoop 1.apply(DAGScheduler.scala:948)atscala.Option.foreach(Option.scala:257)atorg.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948)atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146)atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095)atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084)atorg.apache.spark.util.EventLoop$anon 1. r u n ( E v e n t L o o p . s c a l a : 49 ) a t o r g . a p a c h e . s p a r k . s c h e d u l e r . D A G S c h e d u l e r . r u n J o b ( D A G S c h e d u l e r . s c a l a : 759 ) a t o r g . a p a c h e . s p a r k . S p a r k C o n t e x t . r u n J o b ( S p a r k C o n t e x t . s c a l a : 2061 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . d a t a s o u r c e s . F i l e F o r m a t W r i t e r 1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061) at org.apache.spark.sql.execution.datasources.FileFormatWriter 1.run(EventLoop.scala:49)atorg.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759)atorg.apache.spark.SparkContext.runJob(SparkContext.scala:2061)atorg.apache.spark.sql.execution.datasources.FileFormatWriter.write(FileFormatWriter.scala:167)
… 35 more

通过上面的日志,大概了解到任务失败的原因应该是内存超过限定。 “Container killed by YARN for exceeding memory limits. ”,解决问题的第一思路是 sql 能不能优化下,加内存属于下下策。

解决办法

先讲一下原来的 sql 思路:

SELECT a.name, a.age, b.alias
from a
left join (SELECT id, concat_ws(',', COLLECT_LIST(alias)) aliasfrom bbgroup by id
) b

这是一个很简单的逻辑,猜测问题应该出现在 collect_ws() 函数, 当 b 表根据 id 聚合的时候,如果大量的数据 加载到 list (COLLECT_LIST)里面,将导致内存耗尽。

解决思路 应该是先把重复数据去掉,再调用 concat_ws(’,’ , COLLECT_LIST(alias)),优化后的sql 如下:

SELECT a.name, a.age, b.alias
from a
left join (SELECT id, collect_ws(',', COLLECT_LIST(alias)) aliasfrom (SELECT id, aliasfrom bb group by id, alias)group by id
) b

还有更简单的一种写法,就是使用 COLLECT_SET 代替 COLLECT_LIST:

SELECT a.name, a.age, b.alias
from a
left join (SELECT id, collect_ws(',', COLLECT_SET(alias)) aliasfrom bbgroup by id
) b

哈哈,问题解决!

这篇关于一次spark sql 优化的经历: SparkException: Job aborted / spark.yarn.executor.memoryOverhead的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296570

相关文章

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d