AI做得深,赶快去农村,阿里腾讯百度已经上路!

2023-10-28 16:50

本文主要是介绍AI做得深,赶快去农村,阿里腾讯百度已经上路!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=jpeg 640?wx_fmt=jpeg

选自/脑极体 文/风辞远


去年年底,“一块改变命运的屏幕”成了刷屏话题。


当时支持与反对方各自罗列出很多观点,但我们或许可以承认,这些讨论都是建立在这样一个前提上:新技术与农村生活的结合,已经开始触发一些改变。


把目光放到这个中国最广袤的市场上,会发现从农业到农村市场所需的种种服务,再到农村劳动力转移的宏观走向,其中有太多需求可以被科技力量填补。


而农村市场科技人才资源相对匮乏的客观情况,又让智能化在某种程度上变成了异于城市社会的刚性需求。


如果我们回望2018,会发现从下半年开始,科技巨头们纷纷布局起了AI进军农业的探索,并且各种AI医疗、AI教育的新兴产品与服务,都开始走向农村这块新的试验田。


AI与农村的故事,正在短时间内快速升温。但在热闹的布局背后,我们也会发现一些明晰的瓶颈,横亘在农村市场与AI的想象力之间。


绕过屏幕的争议,更多AI故事正在山村田垄间上演着。无论2019年是否能被称作“AI+农村”元年,至少这一年,田野上的AI故事必然会以一个令人惊奇的百分比上涨。


让我们来回忆一下,直到今天为止,AI都以哪些方式完成了下乡进村的任务。


01

科技巨头的农业圆舞曲


AI进村的核心目标,当然是要证明自己能在第一产业有所建树。


所谓AI农业,在技术逻辑上很容易理解,即利用AI带来的物理识别与机器视觉能力,结合数据分析技术,将农业生产中大量流程进行重新优化,从而以智能方式提高农业生产效率,优化农产品质量。


理论上来说,这套逻辑既能种粮食种菜,也能养猪养鹅。但实际运转起来却不容易。一方面农业数据相对匮乏,标准化程度很低,另一方面相关技术设备近乎空白,AI农业命题之下不仅是算法与数据问题,同时也是对工程化能力与硬件制造能力的考验。


而在AI持有者——BAT为代表的科技巨头们眼中,既然要进军产业AI与产业互联网,那么农业又是无法绕开的一个选项。其巨大市场潜力和社会价值都是科技公司不能放弃的蛋糕。在2018年产业AI全面开动的契机里,农业AI也就顺势开始了自己的故事。


最先动手的是阿里。2018年6月7日,云栖大会·上海峰会上阿里云发布了ET农业大脑,通过数字档案生成、智能农业数据分析、农产品溯源等技术结合,开始将AI解决方案带入农业。


随后半年中,腾讯和京东都宣布了自己的AI农业计划。有消息认为,擅长AI的百度也已经在路上。


综合来看,AI农业命题如今主要走两条路:AI养殖与AI种植。


说到养殖科技,咱们中国人的看家本领那就是养猪。可能很多人没有意识到,在规模化、技术化养猪这条路上,中国人绝对写就了一部波澜壮阔的史诗。也正因为养猪事业的规模化标准化程度高,对新技术十分敏感,科技巨头玩AI+养殖,十有八九都是从猪开始。


阿里的ET农业大脑,就利用了机器视觉加持的AI摄像头与数据分析能力,来观察猪们生长数据,从而达成优胜劣汰;并且将声纹识别和红外线测温带到了养猪场,通过猪的体温和声音进行AI预测猪的身体状况,最终达成提升母猪产崽能力,降低死亡率的效果。


640?wx_fmt=png


去年11月,京东数科也开始描绘AI和猪的浪漫故事。在接入AI摄像头与数据智能系统之外,京东的方案里还加入了IoT系统,以及自主开发的养殖巡检机器人、饲喂机器人等等,并且采用了新的“猪脸识别”技术。


640?wx_fmt=jpeg


有理由相信,接下来会有更多科技公司开始AI养猪生涯。


而AI在种瓜种菜上,也有自己的一套。阿里的ET农业大脑先后在甜瓜和生菜上完成了合作案例。而去年12月,腾讯AI lab团队的“种黄瓜”在国际人工智能温室种植大赛(Autonomous Greenhouse Challenge)上获得了“AI策略”单项第一名、总分第二名。这也被外界认为是腾讯向AI农业的进军开启。


腾讯这次展示的“种黄瓜”,特殊之处在于通过强化学习算法,将专家知识系统潜入了仿真机当中,使智能体可以有效学习人类专家的思维模式,从而回到实际种植中提升黄瓜产量,并且对传感器成本进行了压缩,提高了技术的实用性。


AI种植业,目前一般集中在果园和温室种植当中,通过对植株进行数据收集和智能识别,来判断肥料、水分、温度、光照等条件的适宜与否,从而让粗放的种植模式智能化、精准化。再搭配一些可溯源、可直播的互联网玩法,健康+高产的AI果菜就诞生了。


又能养猪,又能种菜,感觉AI在农业领域已经很吃得开了。


但是不用乐观太早,目前来看,巨头们的AI农业之旅只是刚刚开了个头。今天各种值得夸耀的案例,都还是示范价值远大于商业价值。


一方面,农业数据在今天依旧稀缺,农业AI依旧需要BAT的专家们下到田间地头去采集数据,修正参数。另一方面,大量农业区域和农业领域都是数据的真空地带,今天AI想要走入农业,还只能依靠一些数据化标准化程度高的农业部类,比如现代化养殖场;或者依托有相关农业科技积累的合作者,比如大型农业集团——来更多完成1对1的商业实验性质AI+农业案例。


与中国广袤的农田牧场相比,BAT的专家显然是不够用的。


所以说,今天AI农业还处在科技巨头们做好案例,打好样板,然后吸引有实力的合作伙伴共同推广的阶段。大规模的农业改造还远远谈不上。只有当形成傻瓜式产品与可终端售卖的AI农业解决方案;科技巨头与农户间的产业中间层搭建起了清晰的产业链之后,“AI改变农业”这句话才有被说出口的底气。


但无论如何,当看到北上广高大楼宇里的数据专家和算法工程师,蹬着拖鞋蹲在田里观察农作物长势,我们依稀还是能看到一个有张力的故事开始了。


02

农村社会中的AI新角色


在产业赋能之外,社会服务类的AI技术也在越来越火热。AI医疗、AI教育、AI金融,以及AI政府服务都在成为新的科技赛道。


而需要注意这样一个逻辑,与移动互联网将服务集成化不同的是,AI+社会服务解决的主要是无人化问题。通过对人类经验的机器学习复刻与再传播,AI可以在某种程度上取代一部分专业人才的工作。比如AI语音交互代替教师,机器视觉设备代替医生进行医疗影像识别等等。


这样的能力,在人才饱和地区或许只能被看作替代品和效率提升工具。而在农村地区,则很可能解决的是有和无的问题。


基于AI能力为农村地区提供医疗、教育等服务,今天也在不断增长。比如阿里基于旗下的智能音箱天猫精灵,在去年启动了“天猫精灵小站”计划。该计划通过建立天猫精灵小站图书馆,为农村地区儿童提供更多教育资源。在早期教育人才相对匮乏,教辅资源稀缺的地区,智能音箱的接入不失为解决方案的一种。


而在医疗上,有更多AI进村的案例可以被观察到。比如上个月,很多媒体报道了百度灵医团队的AI 眼底筛查一体机的下乡之旅。


640?wx_fmt=jpeg


通过视觉识别算法的训练,百度打造了基于AI的眼底筛查设备,可以有效识别出“糖网”等早期眼底病灶。与之相对的是,在农村和乡镇地区,拥有准确眼底筛查能力的医生并不多。复杂的眼科疾病只能去省城等大城市就医,而早期疾病更是极大概率被忽略。


而在AI加入后,这个长期存在的问题将有被解决的希望。因为AI设备取代的并不仅仅是机器,同时还包括机器背后医生的判断与识别能力。这对于农村地区是难能可贵的。


类似的案例,目前主要发生在医疗影像识别和化验检测上。有理由相信,不远的将来,AI将协助带来远程门诊甚至远程手术。


而与AI走进农业一样,AI农村医疗和AI农村教育的问题,也是依旧停留在初始阶段。今天类似案例,更多停留在企业公益的范畴内。假如不解决商业化与推广的问题,那么我们将始终看到的是AI又献了爱心,而不是AI真正改变了中国最多数群体的生活。


03

农村劳动力与AI基建


农村地区与AI的另一个结合点,不是AI帮助了农村什么,而是反过来——农村的劳动力成本优势,正在成为AI发展的某种燃料。


去年,很多媒体开始报道AI村、AI农村工厂这样的关键词。这类农村工厂商业模式,是AI需要大量的训练数据,其中又以图片数据为主。而数据标注这个近乎无门槛、与出门打工相比工作相对轻松、重复率异常高、又近乎不可或缺的工作,就被不断下移,直到转移到了村里开工。


于是有人笑称,你发现手机、平板能识别花鸟鱼虫大牌奢侈品,感觉挺高大上的样子,殊不知那是你远在老家的二舅母教的。


出现AI村这件事,有人觉得荒诞,也有人感叹“没人工就没智能”。然而从产业结构上看,AI产业发展中大量必需工作,确实都是常识类、可外包的。而这类工作又会自发去寻找人力成本最低廉的生产地。那么广大农村劳动力自然成为了首选。


640?wx_fmt=png


客观来说,农村人力成本优势与AI的结合将不会很快消亡。这类外包工作中,今天还是以图像识别作为主体。但随着数据与AI产业的深化,各种数据相关的工作都将涌向外包市场,比如数据清洗、数据分拣、垂直行业的数据集加工等等。


对于AI来说,这些工作必不可少,而对于农村地区来说,这些工作意味着可以坐在电脑前相对体面地完成,且不用远离家乡。


而必须注意的是,如果这类AI村、AI农村工厂,不主动寻求自身数据加工能力的逐渐升级,仅仅依靠常识+图像分拣类的工作维持生计,那么市场是很快会在大量竞争下彻底干涸的。只有进入垂直行业,锤炼相对更强的数据操作能力,并且拥有可以说服市场的数据保密能力,才能在这个新兴外包市场中获得长期生存权。


不管怎么说,如果我们认为通过黑客马拉松、算法大赛,来寻找算法开发者和安全工程师,是一件很酷的事,那么通过外包找农村大妈做数据清洗,似乎也没有什么值得说三道四的。二者其实都遵循同样的价值规律:切合新兴产业需求,发挥自我市场定位优势。


04

结束语


不难看出,AI进村的故事,在今天正经历一个蓬勃生长的过程。


巨头在占位,农业企业在自我迭代;公益在散发光芒,创业者也开始闪转腾挪;算法工程师走进了大棚,村里的乡亲正在教育大洋彼岸的AI系统。


变化刚刚开始,然而变化已经开始,这些有张力的画面,或许是今天中国AI发生最深刻影响的地方。


如何适应这样的变化呢?或许一个好的方案,是要从个体职业的角度去思考AI的产业需求和市场需求,然后耐住性子慢慢来。


春天是看不到粮食的,但春天必须播种。


640?wx_fmt=png

往期推荐

640?wx_fmt=png 

「鼎新者」韦福如:与NLP“相恋”的十年

640?wx_fmt=jpeg

▲点击图片

比尔·盖茨2019年公开信:过去一年有9个意外


640?wx_fmt=jpeg

▲点击图片观看

在未来和AI争夺工作的16个实用技巧

640?wx_fmt=jpeg ▲点击图片观看

- 加入社群吧 -

网易智能AI社群(AI芯片、医疗AI、金融AI、电商AI、自动驾驶、教育AI、AIoT、机器人等12个社群)火热招募中,对AI感兴趣的小伙伴,添加智能菌微信 kaiwu_club,说明身份即可加入。

这篇关于AI做得深,赶快去农村,阿里腾讯百度已经上路!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/294584

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti