手把手,嘴对嘴,讲解UCOSII嵌入式操作系统的任务调度策略(五)

本文主要是介绍手把手,嘴对嘴,讲解UCOSII嵌入式操作系统的任务调度策略(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

继续......

整个UCOSII嵌入式操作系统的任务调度策略便是如此,现在进行一个总结:

  • 某个任务在执行中,每隔一定周期发生滴答时钟中断,在中断中遍历整个任务链表,更新每个任务的延时时间,修改就绪状态。
  • 任务执行完毕后,进入延时函数,在延时函数中会把当前任务挂起(清空当前任务的就绪状态,使其进入未就绪状态),然后根据查表发找到在就绪任务中,优先级最高的那一个任务。
  • 找到新任务以后,人工强制发生一个中断,保存上个任务的堆栈信息,弹出下个任务的堆栈信息,同时更改PC指针,进行任务切换。

经过以上三个步骤,便可以完成任务的调度。

现在回到第一篇提出的那个问题:UCOSII到底是如何保证它的实时性的呢? 

如果任务的调度都是发生在当前任务进入延时之后,似乎操作系统根本无法自身的保障实时性。

比如一个优先级最低的任务由于某些处理非常耗费时间,它一直无法进入延时,导致无法进入任务切换,那么优先级高的任务反而是一只都无法被执行了……

同样在第一篇说过,UCOSII系统除了在当前任务进入延时函数会发生调度之外,还有别的时机会进行任务切换:

  1. 当前任务进入了延时;
  2. 当前任务被挂起;
  3. 当前任务执行时,发生了某些中断;

第1点我们已经全部讲完,第2点非常好理解,我们现在看一个函数:OSTaskSuspend()

这个函数的作用是把某个任务挂起(也就是不进行调度),现在来分析一个实例:

有一个任务调用了这个函数:

void App1_task(void *pdata)
{while(1){if (OS_ERR_NONE != OSTaskSuspend(OS_PRIO_SELF)){Dbg_SendStr("App1_task Suspend Error£¡\r\n");}delay_ms(10);};
}

当前任务执行了红色代码之后,便会把自身挂起来,如果没有再别的地方对它进行激活,这个任务便永远也不会执行下去了。

深入分析OSTaskSuspend函数:

INT8U  OSTaskSuspend (INT8U prio)
{BOOLEAN    self;OS_TCB    *ptcb;INT8U      y;
#if OS_CRITICAL_METHOD == 3u                     /* Allocate storage for CPU status register           */OS_CPU_SR  cpu_sr = 0u;
#endif#if OS_ARG_CHK_EN > 0uif (prio == OS_TASK_IDLE_PRIO) {                            /* Not allowed to suspend idle task    */return (OS_ERR_TASK_SUSPEND_IDLE);}if (prio >= OS_LOWEST_PRIO) {                               /* Task priority valid ?               */if (prio != OS_PRIO_SELF) {return (OS_ERR_PRIO_INVALID);}}
#endifOS_ENTER_CRITICAL();if (prio == OS_PRIO_SELF) {                                 /* See if suspend SELF                 */prio = OSTCBCur->OSTCBPrio;self = OS_TRUE;} else if (prio == OSTCBCur->OSTCBPrio) {                   /* See if suspending self              */self = OS_TRUE;} else {self = OS_FALSE;                                        /* No suspending another task          */}ptcb = OSTCBPrioTbl[prio];if (ptcb == (OS_TCB *)0) {                                  /* Task to suspend must exist          */OS_EXIT_CRITICAL();return (OS_ERR_TASK_SUSPEND_PRIO);}if (ptcb == OS_TCB_RESERVED) {                              /* See if assigned to Mutex            */OS_EXIT_CRITICAL();return (OS_ERR_TASK_NOT_EXIST);}y            = ptcb->OSTCBY;OSRdyTbl[y] &= (OS_PRIO)~ptcb->OSTCBBitX;                   /* Make task not ready                 */if (OSRdyTbl[y] == 0u) {OSRdyGrp &= (OS_PRIO)~ptcb->OSTCBBitY;}ptcb->OSTCBStat |= OS_STAT_SUSPEND;                         /* Status of task is 'SUSPENDED'       */OS_EXIT_CRITICAL();if (self == OS_TRUE) {                                      /* Context switch only if SELF         */OS_Sched();                                             /* Find new highest priority task      */}return (OS_ERR_NONE);
}

直接从红色代码部分开始看,他首先判断一下我要挂起的任务是不是自己,现在我们传的参数就是OS_PRIO_SELF,所有它应该执行第一个if判断。

在这个if判断中保存了一下需要挂起的任务的优先级,然后用蓝色代码判断一下需要挂起的任务是否存在(由于我们挂起的是自身,自身肯定是存在的,但是这并不表示这个判断多余,因为如果是一个优先级为1的任务调用这个函数去挂起一个优先级为2的任务,那判断一下还是很必要的)。

然后接下来的几句代码就不用再解释了,和任务进入延时函数把自己的就绪状态情况是一毛一样的处理。

直接看ptcb->OSTCBStat |= OS_STAT_SUSPEND这句代码,变量OSTCBStat 很容易理解,它表示当前任务的状态,整句代码的意义就是给当前任务设定一个已经被人工挂起了的状态,免得在任务调度的时候被调度出来(在滴答时钟中断中有这个变量的判断)。

这句代码以后:

    if (self == OS_TRUE) {                                      /* Context switch only if SELF         */OS_Sched();                                             /* Find new highest priority task      */}

这几句代码也已经很熟悉了,中间那个函数就是任务切换,先看看那个判断,如果我要挂起的是当前任务,那么就立即进行切换,如果挂起的是别的任务,那就不用切换,这个理解起来应该不难。

在理解的第一种切换时机的前提下,第二种任务切换的时机很好理解,但是第二种任务切换的时机仍然不能保证任务执行的实时性,如果低优先级的任务既不进入延时,也不挂起,高优先级的任务依然无法执行。

现在来看第三种,当中断发生时,任务切换……

在任务执行期间,发生频繁的中断必然就是滴答时钟中断,现在重新回到以前看过的那个中断服务函数:

void SysTick_Handler(void)
{if(delay_osrunning==1)                      //OS开始跑了,才执行正常的调度处理{OSIntEnter();                           //进入中断OSTimeTick();                           //调用ucos的时钟服务程序OSIntExit();                            //触发任务切换软中断}
}

这一次的重点不再是第二个函数,而是第一个和第三个函数:OSIntEnter,OSIntExit。

这两个函数是成对出现,从函数名便可看出,OSIntEnter是进入中断时候调用,OSIntExit是离开中断时候调用。

由于滴答时钟是周期性调用,因此这两个函数也是周期性被调用。

OSIntEnter的定义如下:

void  OSIntEnter (void)
{if (OSRunning == OS_TRUE) {if (OSIntNesting < 255u) {OSIntNesting++;                      /* Increment ISR nesting level                        */}}
}

入口函数的定义很简单,就是对变量OSIntNesting执行加处理,表示我现在正在执行中断函数,如果发生了中断,或者有中断嵌套,那么这个变量肯定是大于1的,在系统的很多地方,都需要判断这个变量,因为很多地方都不能在中断中执行。

出口函数的定义就有些复杂了:

void  OSIntExit (void)
{
#if OS_CRITICAL_METHOD == 3u                               /* Allocate storage for CPU status register */OS_CPU_SR  cpu_sr = 0u;
#endifif (OSRunning == OS_TRUE) {OS_ENTER_CRITICAL();if (OSIntNesting > 0u) {                           /* Prevent OSIntNesting from wrapping       */OSIntNesting--;}if (OSIntNesting == 0u) {                          /* Reschedule only if all ISRs complete ... */if (OSLockNesting == 0u) {                     /* ... and not locked.                      */OS_SchedNew();OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];if (OSPrioHighRdy != OSPrioCur) {          /* No Ctx Sw if current task is highest rdy */
#if OS_TASK_PROFILE_EN > 0uOSTCBHighRdy->OSTCBCtxSwCtr++;         /* Inc. # of context switches to this task  */
#endifOSCtxSwCtr++;                          /* Keep track of the number of ctx switches */OSIntCtxSw();                          /* Perform interrupt level ctx switch       */}}}OS_EXIT_CRITICAL();}
}

直接从红色部分开始看,首先判断系统是否在运行,在系统运行的前提下,对变量OSIntNesting进行减处理。

当进入中断以后,调用入口函数,对变量OSIntNesting加1,中断内容处理完以后,对变量OSIntNesting减1,当变量OSIntNesting为0的时候,表示没有进行中断处理,这个时候才可以进行任务切换。

if (OSLockNesting == 0u) {                     /* ... and not locked.                      */OS_SchedNew();OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];if (OSPrioHighRdy != OSPrioCur) {          /* No Ctx Sw if current task is highest rdy */
#if OS_TASK_PROFILE_EN > 0uOSTCBHighRdy->OSTCBCtxSwCtr++;         /* Inc. # of context switches to this task  */
#endifOSCtxSwCtr++;                          /* Keep track of the number of ctx switches */OSIntCtxSw();                          /* Perform interrupt level ctx switch       */}}

然后判断一下系统是否上锁,如果上锁了,任然不能进行调度。

当一切条件就绪以后,调用函数OS_SchedNew,这个函数也已经熟悉了,作用就是寻找在就绪任务中,优先级最高的那一个。

把优先级最高的任务保存在OSPrioHighRdy中,如果当前任务不等于优先级最高的任务,那么就调用系统函数OSIntCtxSw进行任务切换……

看到这里,应该能够回答那个问题了:如何保证系统的实时性?

void SysTick_Handler(void)
{if(delay_osrunning==1)                      //OS开始跑了,才执行正常的调度处理{OSIntEnter();                           //进入中断OSTimeTick();                           //调用ucos的时钟服务程序OSIntExit();                            //触发任务切换软中断}
}

在中断服务函数中,第二个函数负责更新任务就绪表,第三个任务负责切换任务,因为滴答中断是周期性发生的,所以任务切换也是周期性发生的。

当有一个优先级低的任务执行时,如果有优先级更高的任务就绪了,那么只要发生了一次滴答中断,任务就能被立即切换过去,延时只有一个滴答时钟的时间,如果定义的时钟周期是1ms,那么低优先级的任务最多也就能运行1ms,然后便会强行剥夺CPU的执行权限,转交给高优先级的任务。

由于存在这种机制,因此便能保证UCOSII系统任务的实时性。

总结

个人认为,对于一个嵌入式操作系统而言,最核心和最重要的,便是任务调度的机制与策略,只要实现了这个功能,那么一个嵌入式操作系统的架构也就搭建了起来,至于其他的消息,邮箱,队列等功能,都是在这个架构上实现增值产品。

只要深入理解了UCOSII系统的任务调度的原理,那么自己手动实现一个简易的操作系统内核,似乎也并不是一件触不可及的事情。

这篇关于手把手,嘴对嘴,讲解UCOSII嵌入式操作系统的任务调度策略(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/294310

相关文章

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Java集合中的List超详细讲解

《Java集合中的List超详细讲解》本文详细介绍了Java集合框架中的List接口,包括其在集合中的位置、继承体系、常用操作和代码示例,以及不同实现类(如ArrayList、LinkedList和V... 目录一,List的继承体系二,List的常用操作及代码示例1,创建List实例2,增加元素3,访问元