文本分类(5)-TextCNN实现文本分类

2023-10-28 11:10
文章标签 实现 分类 文本 textcnn

本文主要是介绍文本分类(5)-TextCNN实现文本分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用TextCNN对IMDB Reviwe文本进行分类,数据集地址:https://pan.baidu.com/s/1EYoqAcW238saKy3uQCfC3w
提取码:ilze

import numpy as np
import loggingfrom keras import Input
from keras.layers import Conv1D, MaxPool1D, Dense, Flatten, concatenate, Embedding
from keras.models import Model
# from keras.utils import plot_model
from keras.utils.vis_utils import plot_model
import pandas as pd
import warnings
import keras
import re
import matplotlib.pyplot as plt
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Dense, LSTM, Embedding, Dropout, Conv1D, MaxPooling1D, Bidirectional
from keras.models import Sequential
from keras.utils import np_utilswarnings.filterwarnings('ignore')# get data
df1 = pd.read_csv('word2vec-nlp-tutorial/labeledTrainData.tsv', sep='\t', error_bad_lines=False)
df2 = pd.read_csv('word2vec-nlp-tutorial/imdb_master.csv', encoding="latin-1")
df3 = pd.read_csv('word2vec-nlp-tutorial/testData.tsv', sep='\t', error_bad_lines=False)df2 = df2.drop(['Unnamed: 0','type','file'],axis=1)
df2.columns = ["review","sentiment"]
df2 = df2[df2.sentiment != 'unsup']
df2['sentiment'] = df2['sentiment'].map({'pos': 1, 'neg': 0})df = pd.concat([df1, df2]).reset_index(drop=True)train_texts = df.review
train_labels = df.sentimenttest_texts = df3.reviewdef replace_abbreviations(text):texts = []for item in text:item = item.lower().replace("it's", "it is").replace("i'm", "i am").replace("he's", "he is").replace("she's", "she is")\.replace("we're", "we are").replace("they're", "they are").replace("you're", "you are").replace("that's", "that is")\.replace("this's", "this is").replace("can't", "can not").replace("don't", "do not").replace("doesn't", "does not")\.replace("we've", "we have").replace("i've", " i have").replace("isn't", "is not").replace("won't", "will not")\.replace("hasn't", "has not").replace("wasn't", "was not").replace("weren't", "were not").replace("let's", "let us")\.replace("didn't", "did not").replace("hadn't", "had not").replace("waht's", "what is").replace("couldn't", "could not")\.replace("you'll", "you will").replace("you've", "you have")item = item.replace("'s", "")texts.append(item)return textsdef clear_review(text):texts = []for item in text:item = item.replace("<br /><br />", "")item = re.sub("[^a-zA-Z]", " ", item.lower())texts.append(" ".join(item.split()))return textsdef stemed_words(text):stop_words = stopwords.words("english")lemma = WordNetLemmatizer()texts = []for item in text:words = [lemma.lemmatize(w, pos='v') for w in item.split() if w not in stop_words]texts.append(" ".join(words))return textsdef preprocess(text):text = replace_abbreviations(text)text = clear_review(text)text = stemed_words(text)return texttrain_texts = preprocess(train_texts)
test_texts = preprocess(test_texts)max_features = 6000
texts = train_texts + test_texts
tok = Tokenizer(num_words=max_features)
tok.fit_on_texts(texts)
list_tok = tok.texts_to_sequences(texts)maxlen = 130seq_tok = pad_sequences(list_tok, maxlen=maxlen)x_train = seq_tok[:len(train_texts)]
y_train = train_labels
y_train = np_utils.to_categorical(y_train, num_classes=2)# 绘图
def show_history(trian_model):plt.figure(figsize=(10, 5))plt.subplot(121)plt.plot(trian_model.history['acc'], c='b', label='train')plt.plot(trian_model.history['val_acc'], c='g', label='validation')plt.legend()plt.xlabel('epoch')plt.ylabel('accuracy')plt.title('Model accuracy')plt.subplot(122)plt.plot(trian_model.history['loss'], c='b', label='train')plt.plot(trian_model.history['val_loss'], c='g', label='validation')plt.legend()plt.xlabel('epoch')plt.ylabel('loss')plt.title('Model loss')plt.show()def test_cnn(y,maxlen,max_features,embedding_dims,filters = 250):#Inputsseq = Input(shape=[maxlen],name='x_seq')#Embedding layersemb = Embedding(max_features,embedding_dims)(seq)# conv layersconvs = []filter_sizes = [2,3,4]for fsz in filter_sizes:conv1 = Conv1D(filters,kernel_size=fsz,activation='tanh')(emb)pool1 = MaxPool1D(maxlen-fsz+1)(conv1)pool1 = Flatten()(pool1)convs.append(pool1)merge = concatenate(convs,axis=1)out = Dropout(0.5)(merge)output = Dense(32,activation='relu')(out)output = Dense(units=y.shape[1],activation='sigmoid')(output)model = Model([seq],output)
#     model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])return modeldef model_train(model, x_train, y_train):keras.callbacks.EarlyStopping(monitor='val_loss', patience=0, verbose=0, mode='auto')history = model.fit(x_train, y_train, validation_split=0.2, batch_size=100, epochs=20)return historymodel = test_cnn(y_train, maxlen, max_features, embedding_dims=128, filters=250)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])history = model_train(model, x_train, y_train)

在这里插入图片描述

这篇关于文本分类(5)-TextCNN实现文本分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292816

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、