混合模拟退火和教与学的鸽群优化算法-附代码

2023-10-28 10:59

本文主要是介绍混合模拟退火和教与学的鸽群优化算法-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

混合模拟退火和教与学的鸽群优化算法

文章目录

  • 混合模拟退火和教与学的鸽群优化算法
    • 1.鸽群算法
    • 2.改进鸽群优化算法
      • 2.1 模拟退火鸽群优化算法
      • 2.2 线性递减的惯性权重和速度更新
      • 2.3 教与学优化算法
    • 3.实验结果
    • 4.参考文献
    • 5.Matlab代码
    • 6.python代码

摘要:为了改善鸽群优化算法(PIO)容易陷入局部最优和解精度较低的特点,提出一种混合模拟退火和教与学的鸽群优化算法。首先,将鸽群优化算法和模拟退火相结合,可以利用模拟退火跳出局部最优,得到较为精确的解。然后,在鸽群优化算法的速度更新公式中加入惯性权重,并采用线性递减的策略,与教与学算法相结合,增加种群的多样性。

1.鸽群算法

基础鸽群算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/109774886

2.改进鸽群优化算法

2.1 模拟退火鸽群优化算法

模拟退火 [ 4 ] { }^{[4]} [4] 是模拟物体从高温降为低温的过程, 根据 Metropolis 准则, 由于降温操作, 物体从状态 i \mathrm{i} i 变为状态 j \mathrm{j} j, 能 量也从 E ( i ) E(i) E(i) 变为 E ( j ) E(j) E(j), 能量的变化量为 Δ E = E ( i ) − E ( j ) \Delta E=E(i)-E(j) ΔE=E(i)E(j), 当 Δ E > 0 \Delta E>0 ΔE>0, 接受变化的新状态; 当 Δ E < 0 \Delta E<0 ΔE<0, 以一定的概率接 受当前的新状态。当概率 p = exp ⁡ ( E ( i ) − E ( j ) / T ) > p=\exp (E(i)-E(j) / T)> p=exp(E(i)E(j)/T)> rand 时, 接受 当前的新状态, 否则保留旧的状态。其中, T = T ⋅ \mathrm{T}=\mathrm{T} \cdot T=T decayscale, decayscale 为退火系数。
模拟退火鸽群优化算法(SAPIO ) 是以鸽群优化算法为主 流程, 加人了模拟退火机制, 对每个鸽子的位置进行局部寻优, 使算法在接受较优解的同时, 以一定的概率接受较差解, 能够 使算法跳出局部最优。随着物体的降温, 能量逐渐趋于稳定状 态,算法达到全局最优。

2.2 线性递减的惯性权重和速度更新

在鸽群优化算法中, 前期需要较大的速度, 有利于全局搜 索, 能较快地定位最优解的大致位置。随着惯性权重的减小, 速度减小, 能够进行精细的局部搜索和得到更精确的解, 该方 法加快了算法的收敛速度, 提高了算法性能 [ 5 ] { }^{[5]} [5] 。惯性权重的调 节和速度公式如下:
w = w start  − w start  − w end  T 1 × t (6) w=w_{\text {start }}-\frac{w_{\text {start }}-w_{\text {end }}}{T 1} \times t \tag{6} w=wstart T1wstart wend ×t(6)

v i t = w ∗ v i t − 1 ⋅ e − R t + rand ⁡ ⋅ ( x gbest  − x i t − 1 ) (7) \begin{gathered} v_i^t=w * v_i^{t-1} \cdot e^{-R t}+\operatorname{rand} \cdot\left(x_{\text {gbest }}-x_i^{t-1}\right) \end{gathered}\tag{7} vit=wvit1eRt+rand(xgbest xit1)(7)

2.3 教与学优化算法

教与学优化算法(TLBO) [6] 包括教师阶段和学习阶段。在教师阶段,选择种群中最好的个体作为教师,通过教行为提高学生的平均成绩。设 x teacher  x_{\text {teacher }} xteacher  是教师, α \alpha α 是学习因子, 且 α = \alpha= α= round ( 1 + (1+ (1+ rand ( 0 , 1 ) ) , x mean  (0,1)), x_{\text {mean }} (0,1)),xmean  种群内所有个体的平均值。教 师阶段的更新公式如下:
x i t = x i t − 1 + rand ⁡ ( 0 , 1 ) × ( x teacher  − α × x mean  ) (8) x_i^t=x_i^{t-1}+\operatorname{rand}(0,1) \times\left(x_{\text {teacher }}-\alpha \times x_{\text {mean }}\right) \tag{8} xit=xit1+rand(0,1)×(xteacher α×xmean )(8)
在学习阶段, 从种群中随机选出两个不同的个体 x p x_p xp x q x_q xq, 比较两个个体之间的差异。令 x i x_i xi 向其中优秀的个体进行学习。 学生阶段的更新公式如下:
x i t = { x i t − 1 + rand ⁡ ( 0 , 1 ) × ( x p t − x i t − 1 ) , f ( x p ) < f ( x q ) x i t − 1 + rand ⁡ ( 0 , 1 ) × ( x q t − x i t − 1 ) , f ( x p ) > f ( x q ) (9) x_i^t= \begin{cases}x_i^{t-1}+\operatorname{rand}(0,1) \times\left(x_p^t-x_i^{t-1}\right), & f\left(x_p\right)<f\left(x_q\right) \\ x_i^{t-1}+\operatorname{rand}(0,1) \times\left(x_q^t-x_i^{t-1}\right), & f\left(x_p\right)>f\left(x_q\right)\end{cases} \tag{9} xit={xit1+rand(0,1)×(xptxit1),xit1+rand(0,1)×(xqtxit1),f(xp)<f(xq)f(xp)>f(xq)(9)
TLSAPIO 算法实现

输入: 种群规模 N \mathrm{N} N, 最大迭代次数 T 1 + T 2 \mathrm{T} 1+\mathrm{T} 2 T1+T2
输出:最优个体 x gbest 。  x_{\text {gbest 。 }} xgbest  
Step1: 初始化鸽群算法相关的参数, 包括速度和位置。
Step2: 计算鸽子的适应度值, 找出个体极值 x p x_p xp 和全局极值 x gbest  ∘ x_{\text {gbest } \circ} xgbest 

Step3: 执行地图和指南针算子, 并根据公式(1)和(2) 更新鸽子的速度和位置。

Step4: 当 t > T 1 t>\mathrm{T} 1 t>T1 时, 停止执行地图和指南针算子, 转而去执 行地标算子。否则继续 Step3。

Step5: 执行地标算子, 对鸽子的适应度值进行排序, 适应 度值较低的鸽子执行教与学优化算法, 并根据公式 (7) 、(8) 和(9)更新速度和位置, 同时计算适应度值。

Step6: 当 t > T 2 t>\mathrm{T} 2 t>T2 时, 停止执行地标算子, 输出最后结果。否 则继续 Step5。

Step7: 计算两次位置变化引起的适应度值的变化量 Δ f = f i ( x i ( t + 1 ) ) − f i ( x i ( t ) ) \Delta f=f_i\left(x_i(t+1)\right)-f_i\left(x_i(t)\right) Δf=fi(xi(t+1))fi(xi(t)), 如果 Δ f < 0 \Delta f<0 Δf<0 exp ⁡ ( − Δ f / T ) > \exp (-\Delta f / T)> exp(Δf/T)> rand, 则接受新位置, 否则保留旧位置。
Step8: 执行降温操作, T = T ⋅ \mathrm{T}=\mathrm{T} \cdot T=T decayscale。
Step9: 判断是否满足终止条件, 若满足, 则结束算法, 输 出全局最优值。否则转 Step2。

3.实验结果

请添加图片描述

4.参考文献

[1]未建英,张丽娜,付发.混合模拟退火和教与学的鸽群优化算法[J].科技经济导刊,2019,27(12):153-155.

5.Matlab代码

6.python代码

这篇关于混合模拟退火和教与学的鸽群优化算法-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292743

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO