2022-Deep generative molecular design reshapes drug discovery-分子生成设计重塑药物发现

本文主要是介绍2022-Deep generative molecular design reshapes drug discovery-分子生成设计重塑药物发现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 药物发现中的深度生成模型
    • 化合物/分子的表示
  • Deep Generative Models
    • 递归神经网 RNN
    • 变分自动编码器 VAE
    • 生成性对抗网络 (Generative Adversarial Networks, GANs)
    • Flow-based models
    • 强化学习(Reinforcement Learning, RL)
  • 在小分子药物设计中的应用
    • 生成有效的小分子
    • 生成具有类药物特性的分子
    • 生成具有多目标类药物性质的分子
    • 通过优化生成更好的生物可利用分子
    • 捕获配体-蛋白质相互作用的 3D 信息
  • 在大分子药物设计中的应用
    • AMP 生成
    • 治疗性蛋白质生成
    • CRISPR-Cas9系统设计和优化
  • 前景、未来方向
    • 可解释的生成模型
    • 小样本生成模型
    • 多模态生成模型
    • 从数据使用者到数据生产者的创成模型
  • Conclusion and Outlook

随着科技的发展,人工智能(AI)和深度生成模型的最新进展和成就已经确立了其在医学应用中的实用性,特别是在药物发现和开发方面。为了正确应用人工智能,开发人员和用户面临着诸如要考虑哪些协议、要仔细检查哪些因素以及深度生成模型如何整合相关学科等问题。这篇综述是2022年10月发表在“Cell Resports Medicine”杂志上的,IF=16.988。这篇综述总结了经典和新开发的人工智能方法,为广泛的计算药物发现和开发社区提供了更新且易于访问的指南。从不同角度介绍了深度生成模型,并描述了表示化学和生物结构及其应用的理论框架。讨论了数据和技术挑战,并强调了多模态深度生成模型的未来方向,以加速药物发现。

药物发现中的深度生成模型

最近的一项研究估计,制药公司在2年花费了6亿美元用于开发美国食品和药物管理局批准的新药,高于2015年的802.2003亿美元。尽管在临床试验期间会产生更多的直接成本,但由于临床前投资来得更早,因此两个阶段的资本化成本大致相等。计算科学和技术的最新进展抓住了必要性和紧迫性,并提供了一套潜在的有前途的方法。其中,开发人员可以选择正确的人工智能(AI)来针对手头的问题,特别是深度生成模型,适当的协议和因素。总的来说,他们绘制了整合生物学、化学、计算科学、药理学和疾病治疗的路径。计算能力、数据量和高级算法的快速增长导致了人工智能在药物发现方面的突破,特别是在深度生成模型的应用中。这些模型已成为改变小分子和大分子设计、优化和合成的高潜力工具(图 1)。

深度生成模型的应用已经提供了新的部分优化的候选线索,在某些情况下,传统顺序方法通常需要更短的时间。如果大规模应用,深度生成建模有可能促进开发(R&D)过程。

图 1 药物发现管道中的 AI 和深度生成模型应用

图 1 药物发现管道中的 AI 和深度生成模型应用

深度生成模型对应于一个理论框架,该框架使用数据结构(例如图形和指纹)以及操作(例如功能或实验信息流)生成具有所需特性的新型化学和生物结构。创造性的深度生成模型可以显著促进算法在药物发现中的开发和应用。在这个“大数据”时代,深度生成模型将提供一项尖端技术,可以彻底改变生物学、疾病和治疗学的信息学观点。在本综述中,我们描述了经典和最先进的深度生成模型及其在计算药物发现中的应用(图1),并讨论了局限性和挑战。我们的目标是概述小分子和大分子系统上多种应用中深度生成模型的当前工具和技术(工具箱)。

化合物/分子的表示

分子的表示对于生成模型很重要。有三种类型的表示:(1)基于序列,(2)基于图形和(3)图像(图2)。

自然语言处理(NLP)的空前成功激发了以类似于人类语言的方式描述符号分子的想法。生物结构中的语义和语法与人类语言相似;因此,分子可以表示为字符序列。从头小分子设计通常使用简化的分子输入线输入系统(SMILES)。基于序列的结构是按照编码到向量的 SMILES 语法规则生成的(图 2A)。

表示分子的更直接方法是基于图。在图形表示中,小分子的原子形成一组节点,键被视为边缘(图2B)。对于大分子,接触图是表示任何两个氨基酸残基对之间距离的图表。然而,基于序列和基于图形的方法都无法捕获

这篇关于2022-Deep generative molecular design reshapes drug discovery-分子生成设计重塑药物发现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/289053

相关文章

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系