讨厌算法的程序员 2 - 证明算法的正确性

2023-10-27 23:10

本文主要是介绍讨厌算法的程序员 2 - 证明算法的正确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讨厌算法的程序员系列入口

第1篇介绍了插入排序算法,这里要提出一个问题:学习算法仅仅是积累一个又一个的算法实现吗?

当然不是。比算法本身更重要也更基础的,是对算法的分析:能够证明其正确性,能够理解其效率。这也是自行设计新算法的基础。如果学了一堆算法的实现,而不能判断算法的优劣,或者靠死记硬背记住了各个算法的复杂度等性能指标,那么随着时间的流逝,这一切都是要还给课本的。

算法的正确性

正确性

当我们设计或者实现完成一个算法后,如何证明它是正确的呢?

对于程序员来说,司空见惯的做法是,我们会找几个测试用例,也就是事先定义好的输入输出,然后把输入送进程序里跑一下。如果算法能自动结束,且输出和预期一致,我们就认为算法是ok的。

可是我们无法穷举输入,如何能确定未来的某一输入就一定会有正确的输出呢?靠测试用例是无法保障算法的正确性的。

循环不变式

下面介绍能够证明算法正确性的“循环不变式”。

它的英文名是loop invariant,就是正确的算法在循环的各个阶段,总是存在一个固定不变的特性。找出这个特性并证明其固定不变,从而推断出算法是正确的。

具体的说,必须证明循环不变式满足下面三个性质:

  • 初始化:循环的第一次迭代之前,不变式为真;
  • 保持:循环的某次迭代之前不变式为真,下次迭代之前其仍然为真;
  • 终止:循环终止时,不变式依然成立。

这个过程类似于数学归纳法,为了证明某条性质成立,需要证明一个基本情况和一个归纳步。第一步“初始化”可以对应“基本情况”,第二步“保持”对应于“归纳步”。而第三步“终止”也许是最重要的,因为我们将用终止时循环不变式来证明算法的正确性。

这里定义循环不变式的窍门就是:结合导致循环终止的条件一起定义循环不变式。

证明插入排序的正确性

利用上一节的“循环不变式”,我们证明第1篇中介绍的插入排序的正确性。

对于插入排序,一开始我们就注意到其在玩扑克牌中的应用,这里面有一个关键的认知:我们手中已经摸到的牌始终是排好序的,也就是我们找到的循环不变式:A[1 ‥ j-1]在循环的三个阶段均为有序。无论在循环前,循环中,还是循环后,它都是不变的。

INSERTION-SORT(A)
1 for j = 2 to A.length
2   key = A[j]
3   // Insert A[j] into the sorted sequence A[1..j-1].
4   i = j - 1
5   while i > 0 and A[i] > key
6       A[i + 1] = A[i]
7       i = i - 1
8   A[i + 1] = key

插入排序

证明如下:

  1. 初始化:首先证明在第一次循环迭代之前(当j = 2时),循环不变式成立。此时,A[1 ‥ j-1]中仅由一个元素A[1]组成,“有序性”当然是成立的。从上图中(a)中,有序数组中只有5一个元素;

  2. 保持:其次处理第二条性质:证明每次迭代保持循环不变式。在循环的每次迭代过程中,A[1 ‥ j-1]的“有序性”仍然保持。上图中所有的黑色块左侧子数组永远都是有序的;

  3. 终止:最后研究在循环终止时发生了什么。导致外层for循环终止的条件是j > A.length=n,此时j = n + 1。在循环不变式的表述中将j用n+1代替,那么A[1 ‥ j-1]的“有序性”,就是A[1 ‥ n]有序,这就证明了最终的整个数组是排序好的。上图中(f)表明整个数组已经排好序。

以后,我们还会用到循环不变式来证明其他算法的正确性。

上一篇 1 插入排序
下一篇 3 算法分析基础


共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)



作者:黑猿大叔
链接:https://www.jianshu.com/p/1fffff56d260
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

这篇关于讨厌算法的程序员 2 - 证明算法的正确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/289048

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖