讨厌算法的程序员 2 - 证明算法的正确性

2023-10-27 23:10

本文主要是介绍讨厌算法的程序员 2 - 证明算法的正确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讨厌算法的程序员系列入口

第1篇介绍了插入排序算法,这里要提出一个问题:学习算法仅仅是积累一个又一个的算法实现吗?

当然不是。比算法本身更重要也更基础的,是对算法的分析:能够证明其正确性,能够理解其效率。这也是自行设计新算法的基础。如果学了一堆算法的实现,而不能判断算法的优劣,或者靠死记硬背记住了各个算法的复杂度等性能指标,那么随着时间的流逝,这一切都是要还给课本的。

算法的正确性

正确性

当我们设计或者实现完成一个算法后,如何证明它是正确的呢?

对于程序员来说,司空见惯的做法是,我们会找几个测试用例,也就是事先定义好的输入输出,然后把输入送进程序里跑一下。如果算法能自动结束,且输出和预期一致,我们就认为算法是ok的。

可是我们无法穷举输入,如何能确定未来的某一输入就一定会有正确的输出呢?靠测试用例是无法保障算法的正确性的。

循环不变式

下面介绍能够证明算法正确性的“循环不变式”。

它的英文名是loop invariant,就是正确的算法在循环的各个阶段,总是存在一个固定不变的特性。找出这个特性并证明其固定不变,从而推断出算法是正确的。

具体的说,必须证明循环不变式满足下面三个性质:

  • 初始化:循环的第一次迭代之前,不变式为真;
  • 保持:循环的某次迭代之前不变式为真,下次迭代之前其仍然为真;
  • 终止:循环终止时,不变式依然成立。

这个过程类似于数学归纳法,为了证明某条性质成立,需要证明一个基本情况和一个归纳步。第一步“初始化”可以对应“基本情况”,第二步“保持”对应于“归纳步”。而第三步“终止”也许是最重要的,因为我们将用终止时循环不变式来证明算法的正确性。

这里定义循环不变式的窍门就是:结合导致循环终止的条件一起定义循环不变式。

证明插入排序的正确性

利用上一节的“循环不变式”,我们证明第1篇中介绍的插入排序的正确性。

对于插入排序,一开始我们就注意到其在玩扑克牌中的应用,这里面有一个关键的认知:我们手中已经摸到的牌始终是排好序的,也就是我们找到的循环不变式:A[1 ‥ j-1]在循环的三个阶段均为有序。无论在循环前,循环中,还是循环后,它都是不变的。

INSERTION-SORT(A)
1 for j = 2 to A.length
2   key = A[j]
3   // Insert A[j] into the sorted sequence A[1..j-1].
4   i = j - 1
5   while i > 0 and A[i] > key
6       A[i + 1] = A[i]
7       i = i - 1
8   A[i + 1] = key

插入排序

证明如下:

  1. 初始化:首先证明在第一次循环迭代之前(当j = 2时),循环不变式成立。此时,A[1 ‥ j-1]中仅由一个元素A[1]组成,“有序性”当然是成立的。从上图中(a)中,有序数组中只有5一个元素;

  2. 保持:其次处理第二条性质:证明每次迭代保持循环不变式。在循环的每次迭代过程中,A[1 ‥ j-1]的“有序性”仍然保持。上图中所有的黑色块左侧子数组永远都是有序的;

  3. 终止:最后研究在循环终止时发生了什么。导致外层for循环终止的条件是j > A.length=n,此时j = n + 1。在循环不变式的表述中将j用n+1代替,那么A[1 ‥ j-1]的“有序性”,就是A[1 ‥ n]有序,这就证明了最终的整个数组是排序好的。上图中(f)表明整个数组已经排好序。

以后,我们还会用到循环不变式来证明其他算法的正确性。

上一篇 1 插入排序
下一篇 3 算法分析基础


共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)



作者:黑猿大叔
链接:https://www.jianshu.com/p/1fffff56d260
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

这篇关于讨厌算法的程序员 2 - 证明算法的正确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/289048

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/