VQ-VAE torch 实现

2023-10-27 21:36
文章标签 实现 torch vq vae

本文主要是介绍VQ-VAE torch 实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • model
  • main

model

import torch
import torch.nn as nnclass ResidualBlock(nn.Module):def __init__(self, dim):super().__init__()self.relu = nn.ReLU()self.conv1 = nn.Conv2d(dim, dim, 3, 1, 1)self.conv2 = nn.Conv2d(dim, dim, 1)def forward(self, x):tmp = self.relu(x)tmp = self.conv1(tmp)tmp = self.relu(tmp)tmp = self.conv2(tmp)return x + tmpclass VQVAE(nn.Module):def __init__(self, input_dim, dim, n_embedding):super().__init__()self.encoder = nn.Sequential(nn.Conv2d(input_dim, dim, 4, 2, 1),nn.ReLU(), nn.Conv2d(dim, dim, 4, 2, 1),nn.ReLU(), nn.Conv2d(dim, dim, 3, 1, 1),ResidualBlock(dim), ResidualBlock(dim))self.vq_embedding = nn.Embedding(n_embedding, dim)self.vq_embedding.weight.data.uniform_(-1.0 / n_embedding,1.0 / n_embedding)self.decoder = nn.Sequential(nn.Conv2d(dim, dim, 3, 1, 1),ResidualBlock(dim), ResidualBlock(dim),nn.ConvTranspose2d(dim, dim, 4, 2, 1), nn.ReLU(),nn.ConvTranspose2d(dim, input_dim, 4, 2, 1))self.n_downsample = 2def forward(self, x):# encodeze = self.encoder(x)# ze: [N, C, H, W]# embedding [K, C]embedding = self.vq_embedding.weight.dataN, C, H, W = ze.shapeK, _ = embedding.shapeembedding_broadcast = embedding.reshape(1, K, C, 1, 1)ze_broadcast = ze.reshape(N, 1, C, H, W)distance = torch.sum((embedding_broadcast - ze_broadcast)**2, 2)nearest_neighbor = torch.argmin(distance, 1)# make C to the second dimzq = self.vq_embedding(nearest_neighbor).permute(0, 3, 1, 2)# stop gradientdecoder_input = ze + (zq - ze).detach()# decodex_hat = self.decoder(decoder_input)return x_hat, ze, zq@torch.no_grad()def encode(self, x):ze = self.encoder(x)embedding = self.vq_embedding.weight.data# ze: [N, C, H, W]# embedding [K, C]N, C, H, W = ze.shapeK, _ = embedding.shapeembedding_broadcast = embedding.reshape(1, K, C, 1, 1)ze_broadcast = ze.reshape(N, 1, C, H, W)distance = torch.sum((embedding_broadcast - ze_broadcast)**2, 2)nearest_neighbor = torch.argmin(distance, 1)return nearest_neighbor@torch.no_grad()def decode(self, discrete_latent):zq = self.vq_embedding(discrete_latent).permute(0, 3, 1, 2)x_hat = self.decoder(zq)return x_hat# Shape: [C, H, W]def get_latent_HW(self, input_shape):C, H, W = input_shapereturn (H // 2**self.n_downsample, W // 2**self.n_downsample)

main

def train_vqvae(model: VQVAE,img_shape=None,device='cuda',ckpt_path='dldemos/VQVAE/model.pth',batch_size=64,dataset_type='MNIST',lr=1e-3,n_epochs=100,l_w_embedding=1,l_w_commitment=0.25):print('batch size:', batch_size)dataloader = get_dataloader(dataset_type,batch_size,img_shape=img_shape,use_lmdb=USE_LMDB)model.to(device)model.train()optimizer = torch.optim.Adam(model.parameters(), lr)mse_loss = nn.MSELoss()tic = time.time()for e in range(n_epochs):total_loss = 0for x in dataloader:current_batch_size = x.shape[0]x = x.to(device)x_hat, ze, zq = model(x)l_reconstruct = mse_loss(x, x_hat)l_embedding = mse_loss(ze.detach(), zq)l_commitment = mse_loss(ze, zq.detach())loss = l_reconstruct + \l_w_embedding * l_embedding + l_w_commitment * l_commitmentoptimizer.zero_grad()loss.backward()optimizer.step()total_loss += loss.item() * current_batch_sizetotal_loss /= len(dataloader.dataset)toc = time.time()torch.save(model.state_dict(), ckpt_path)print(f'epoch {e} loss: {total_loss} elapsed {(toc - tic):.2f}s')print('Done')

这篇关于VQ-VAE torch 实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/288553

相关文章

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in