SparkSQL执行流程与Catalyst优化器

2023-10-26 14:30

本文主要是介绍SparkSQL执行流程与Catalyst优化器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、SparkSQL运行流程与Catalyst优化器

        (1)RDD运行流程

        (2)SparkSQL自动优化

        (3)Catalyst优化器流程

        (4)Catalyst优化器总结

        (5)Spark SQL执行流程


一、SparkSQL运行流程与Catalyst优化器

        (1)RDD运行流程
RDD简要流程

        (2)SparkSQL自动优化

        RDD的运行会完全安装开发者的代码执行,如果开发者水平有限,RDD的执行效率也会受到影响。而SparkSQL会对写完的代码,执行“ 自动优化 ”,以提高代码运行效率,比米娜开发者水平影响到代码执行效率。

        为什么Spark SQL可以自动优化,而RDD不可以?因为RDD内含数据类型不限格式和结构,而Data Frame 100%是二维表结构,可以针对性的进行优化。Spark SQL的自动优化,依赖于Catalyst优化器。

        (3)SparkSQL架构

        为了解决过多依赖Hive 的问题,SparkSQL使用了一个新的SQL优化器替代 Hive 中的优化器,这个优化器就是Catalyst,整个SparkSQL的架构大致如下:

        1.API层简单的说就是Spark 会通过一些API接受SQL语句.

        2.收到SQL语句以后,将其交给Catalyst,Catalyst负责解析SQL,生成执行计划等

        3.Catalyst的输出应该是RDD的执行计划.

        4.最终交由集群运行.

        (3)Catalyst优化器流程

        Step 1:解析SQL,并且生成AST(抽象语法树,从下往上读)

        Step2:在AST中加入元数据信息,做这一步主要是为了一些优化,如下图

        Step3:对已经加入元数据的AST,输入优化器,继续优化,从两种常见的优化开始。

        ①断言下推(Predicate Pushdown):将filter这种可以减少数据集的操作下推,放在Scan的位置,这样就可以减少操作时候的数据量。

        如下图:正常流程是先Join,然后做WHERE,断言下推后,会先过滤age,然后再Join,减少Join的数据量提高性能。

        ②列值裁剪(Column Pruning):在断言下推后执行裁剪。

        如下图:由于people表之上的操作只用到了id列,所有可以把其他列裁剪掉,这样就可以减少处理的数据量,从而优化处理速度。

        还有其余许多优化点,大概一共有一两百种,随着Spark SQL发展也会越来越多,想要了解更多可以查阅Spark源码:org.apache.spark.sql.catalyst.optimizer.Optimizer

        Step4:经过上述流程后,产生的AST其实最终还没有办法直接运行,这个AST叫做逻辑计划,结束后,需要生成物理计划,从而生成RDD来运行。

        在生成“ 物理计划 ”的时候,会经过“ 成本模型 ”对整棵树再次执行优化,选择一个更好的计划,在生成“ 物理计划 ”以后,因为考虑到性能,所有会使用代码生成,在机器中运行。可以使用queryExecution 方法查看逻辑执行计划,使用explain方法查看物理执行计划

        (4)Catalyst优化器总结

        catalyst的各种优化细节非常多,大方面的优化点有2个:

        ①谓词下推(Predicate Pushdown)\断言下推:将逻辑判断提前到前面,以减少shuffle阶段的数据量。简述,行过滤,提前执行where。

        ②列值裁剪(Column Pruning):将加载的列进行裁剪,尽量减少被处理数据的宽度。简述,列过滤,提前规划select的字段数量。

        (5)Spark SQL执行流程

        1.提交SparkSQL代码

        2.catalyst优化

                a.生成原始AST语法数

                b.标记AST元数据

                c.进行断言下推和列值裁剪以及其它方面的优化作用在AST上

                d.将最终AST得到,生成执行计划

                e.将执行计划翻译为RDD代码

        3. Driver执行环境入口构建(SparkSession)

        4.DAG调度器规划逻辑任务

        5.TASK调度区分配逻辑任务到具体Executor上工作并监控管理任务

        6. Worker干活.

这篇关于SparkSQL执行流程与Catalyst优化器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285658

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变