0基础学习PyFlink——使用Table API实现SQL功能

2023-10-25 13:45

本文主要是介绍0基础学习PyFlink——使用Table API实现SQL功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在《0基础学习PyFlink——使用PyFlink的Sink将结果输出到Mysql》一文中,我们讲到如何通过定义Souce、Sink和Execute三个SQL,来实现数据读取、清洗、计算和入库。
如下图所示SQL是最高层级的抽象,在它之下是Table API。本文我们会将例子中的SQL翻译成Table API来实现等价的功能。
在这里插入图片描述

Souce

    # """create table source (#         word STRING#     ) with (#         'connector' = 'filesystem',#         'format' = 'csv',#         'path' = '{}'#     )# """.format(input_path)

下面的SQL分为两部分:

  • Table结构:该表只有一个名字为word,类型为string的字段。
  • 连接器:是“文件系统”(filesystem)类型,格式是csv的文件。这样输入就会按csv格式进行解析。

SQL中的Table对应于Table API中的schema。它用于定义表的结构,比如有哪些类型的字段和主键等。
上述整个SQL整体对应于descriptor。即我们可以认为descriptor是表结构+连接器。
我们可以让不同的表和不同的连接器结合,形成不同的descriptor。这是一个组合关系,我们将在下面看到它们的组合方式。

schema

    # define the source schemasource_schema = Schema.new_builder() \.column("word", DataTypes.STRING()) \.build()

new_builder()会返回一个Schema.Builder对象;
column(self, column_name: str, data_type: Union[str, DataType])方法用于声明该表存在哪些类型、哪些名字的字段,同时返回之前的Builder对象;
最后的build(self)方法返回Schema.Builder对象构造的Schema对象。

descriptor

    # Create a source descriptorsource_descriptor= TableDescriptor.for_connector("filesystem") \.schema(source_schema) \.option('path', input_path) \.format("csv") \.build()

for_connector(connector: str)方法返回一个TableDescriptor.Builder对象;
schema(self, schema: Schema)将上面生成的source_schema 对象和descriptor关联;
option(self, key: Union[str, ConfigOption], value)用于指定一些参数,比如本例用于指定输入文件的路径;
format(self, format: Union[str, ‘FormatDescriptor’], format_option: ConfigOption[str] = None)用于指定内容的格式,这将指导怎么解析和入库;
build(self)方法返回TableDescriptor.Builder对象构造的TableDescriptor对象。

Sink

    # """CREATE TABLE WordsCountTableSink (#         `word` STRING,#         `count` BIGINT,#         PRIMARY KEY (`word`) NOT ENFORCED#     ) WITH (#         'connector' = 'jdbc',#         'url' = 'jdbc:mysql://127.0.0.1:3306/words_count_db?useSSL=false',#         'table-name' = 'WordsCountTable',#         'driver'='com.mysql.jdbc.Driver',#         'username'='admin',#         'password'='pwd123'#     );# """

schema

    sink_schema = Schema.new_builder() \.column("word", DataTypes.STRING().not_null()) \.column("count", DataTypes.BIGINT()) \.primary_key("word") \.build()

大部分代码在之前已经解释过了。我们主要关注于区别点:

  • primary_key(self, *column_names: str) 用于指定表的主键。
  • 主键的类型需要使用调用not_null(),以表明其非空。

descriptor

    # Create a sink descriptorsink_descriptor = TableDescriptor.for_connector("jdbc") \.schema(sink_schema) \.option("url", "jdbc:mysql://127.0.0.1:3306/words_count_db?useSSL=false") \.option("table-name", "WordsCountTable") \.option("driver", "com.mysql.jdbc.Driver") \.option("username", "admin") \.option("password", "pwd123") \.build()

这块代码主要是通过option来设置一些连接器相关的设置。可以看到这是用KV形式设计的,这样就可以让option方法有很大的灵活性以应对不同连接器千奇百怪的设置。

Execute

使用下面的代码将表创建出来,以供后续使用。

t_env.create_table("source", source_descriptor)
tab = t_env.from_path('source')
t_env.create_temporary_table("WordsCountTableSink", sink_descriptor)
    # execute insert# """insert into WordsCountTableSink#     select word, count(1) as `count`#     from source#     group by word# """
    tab.group_by(col('word')) \.select(col('word'), lit(1).count) \.execute_insert("WordsCountTableSink") \.wait()

这儿需要介绍的就是lit。它用于生成一个表达式,诸如sum、max、avg和count等。
execute_insert(self, table_path_or_descriptor: Union[str, TableDescriptor], overwrite: bool = False)用于将之前的计算结果插入到Sink表中

完整代码

import argparse
import logging
import sysfrom pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, coldef word_count(input_path):config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)# """create table source (#         word STRING#     ) with (#         'connector' = 'filesystem',#         'format' = 'csv',#         'path' = '{}'#     )# """# define the source schemasource_schema = Schema.new_builder() \.column("word", DataTypes.STRING()) \.build()# Create a source descriptorsource_descriptor = TableDescriptor.for_connector("filesystem") \.schema(source_schema) \.option('path', input_path) \.format("csv") \.build()t_env.create_table("source", source_descriptor)# """CREATE TABLE WordsCountTableSink (#         `word` STRING,#         `count` BIGINT,#         PRIMARY KEY (`word`) NOT ENFORCED#     ) WITH (#         'connector' = 'jdbc',#         'url' = 'jdbc:mysql://127.0.0.1:3306/words_count_db?useSSL=false',#         'table-name' = 'WordsCountTable',#         'driver'='com.mysql.jdbc.Driver',#         'username'='admin',#         'password'='pwd123'#     );# """# define the sink schemasink_schema = Schema.new_builder() \.column("word", DataTypes.STRING().not_null()) \.column("count", DataTypes.BIGINT()) \.primary_key("word") \.build()# Create a sink descriptorsink_descriptor = TableDescriptor.for_connector("jdbc") \.schema(sink_schema) \.option("url", "jdbc:mysql://127.0.0.1:3306/words_count_db?useSSL=false") \.option("table-name", "WordsCountTable") \.option("driver", "com.mysql.jdbc.Driver") \.option("username", "admin") \.option("password", "pwd123") \.build()t_env.create_temporary_table("WordsCountTableSink", sink_descriptor)# execute insert# """insert into WordsCountTableSink#     select word, count(1) as `count`#     from source#     group by word# """tab = t_env.from_path('source')tab.group_by(col('word')) \.select(col('word'), lit(1).count) \.execute_insert("WordsCountTableSink") \.wait()if __name__ == '__main__':logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")parser = argparse.ArgumentParser()parser.add_argument('--input',dest='input',required=False,help='Input file to process.')argv = sys.argv[1:]known_args, _ = parser.parse_known_args(argv)word_count(known_args.input)

参考资料

  • https://nightlies.apache.org/flink/flink-docs-master/zh/docs/concepts/overview/
  • https://nightlies.apache.org/flink/flink-docs-release-1.17/api/python//reference/pyflink.table/descriptors.html

这篇关于0基础学习PyFlink——使用Table API实现SQL功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282969

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当