Additive Powers-of-Two (APoT) Quantization:硬件友好的非均匀量化方法

本文主要是介绍Additive Powers-of-Two (APoT) Quantization:硬件友好的非均匀量化方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Additive Powers-of-Two Quantization:硬件友好的非均匀量化方法

      • 摘要
      • 方法
        • Additive Powers-of-Two量化 (APoT)
          • 量化表示
          • 均匀量化表示
          • Powers-of-Two (PoT) 量化表示
          • Additive Powers-of-Two(APoT)量化表示
        • 参数化Clipping函数 (RCF)
        • 权重归一化
        • APoT量化伪代码
      • 实验结果
        • CIFAR-10
        • ImageNet

本文是电子科大&哈佛大学&新加坡国立联合发表在 ICLR2020 上的一篇非均匀量化(APoT)的工作。本文,在非均匀量化中通过采用Additive Powers-of-Two(APoT)加法二次幂量化,综合考虑了计算上有效性,低比特量化导致的模型精度下降问题。并实现了不错的量化效果!

  • 论文题目:Additive Powers-of-Two Quantization: A Non-uniform Discretization for Neural Networks
  • 论文链接:https://arxiv.org/pdf/1909.13144v2.pdf
  • 论文代码:https://github.com/yhhhli/APoT_Quantization

摘要

本文首先提出了Additive Powers-of-Two(APoT)加法二次幂量化,一种针对钟形和长尾分布的神经网络权重,有效的非均匀性量化方案。通过将所有量化数值限制为几个二次幂相加,这APoT量化有利于提高计算效率,并与权重分布良好匹配。其次,本文通过参数化Clipping函数以生成更好的更新最佳饱和阈值的梯度。最后,提出对权重归一化来调整权重的输入分布,使其在量化后更加稳定和一致。实验结果表明,本文提出的方法优于最先进的方法,甚至可以与全精度模型竞争,因此证明了本文提出的APoT量化的有效性。例如,本文在 ImageNe t上的 3bit 量化 ResNet-34 仅下降了 0.3% 的 Top-1 和 0.2% Top-5 的准确性。

方法

Additive Powers-of-Two量化 (APoT)

三种量化方法示意图

量化表示

W ^ = Π Q ( α , b ) ⌊ W , α ⌉ \hat{\boldsymbol{W}}=\Pi_{\mathcal{Q}(\alpha, b)}\lfloor\boldsymbol{W}, \alpha\rceil W^=ΠQ(α,b)W,α

  • W ∈ R C out × C in × K × K \boldsymbol{W} \in \mathbb{R}^{C_{\text {out}} \times C_{\text {in}} \times K \times K} WRCout×Cin×K×K
  • α \alpha α 代表裁剪阈值。
  • ⌊ ⋅ , α ⌉ \lfloor \cdot , \alpha\rceil ,α 代表Clip函数,将权重裁剪到 [ − α , α ] [-\alpha, \alpha] [α,α]
  • W \boldsymbol{W} W中每个元素通过 Π ( ⋅ ) \Pi(\cdot) Π() 映射成量化值
  • Q ( α , b ) \mathcal{Q}(\alpha, b) Q(α,b)代表量化候选数值
  • b b b 代表量化位宽
均匀量化表示

Q u ( α , b ) = α × { 0 , ± 1 2 b − 1 − 1 , ± 2 2 b − 1 − 1 , … , ± 1 } \mathcal{Q}^{u}(\alpha, b)=\alpha \times\left\{0, \frac{\pm 1}{2^{b-1}-1}, \frac{\pm 2}{2^{b-1}-1}, \ldots,\pm 1\right\} Qu(α,b)=α×{0,2b11±1,2b11±2,,±1}

Powers-of-Two (PoT) 量化表示

Q p ( α , b ) = α × { 0 , ± 2 − 2 b − 1 + 1 , ± 2 − 2 b − 1 + 2 , … , ± 2 − 1 , ± 1 } \mathcal{Q}^{p}(\alpha, b)=\alpha \times\left\{0, \pm 2^{-2^{b-1}+1}, \pm 2^{-2^{b-1}+2}, \ldots, \pm 2^{-1},\pm 1\right\} Qp(α,b)=α×{0,±22b1+1,±22b1+2,,±21,±1}

基于Powers-of-Two (PoT) 的非均匀量化模式有一个好处是在计算过程中可以采用移位的方式代替复杂的乘法运算,因此幂次的非均匀量化可以显著提高计算效率。如下公示所示:

2 k x = { x if  k = 0 x < < k if  k > 0 x > > k if  k < 0 2^{k} x=\left\{\begin{array}{lr} x & \text { if } k = 0 \\ x << k & \text { if } k > 0 \\ x >> k & \text { if } k < 0 \end{array}\right. 2kx=xx<<kx>>k if k=0 if k>0 if k<0

基于Powers-of-Two (PoT) 的非均匀量化十分适配基于钟型的weights形式,可以实现0附近权重集中的位置量化表示多,长尾部分量化表示少。

Additive Powers-of-Two(APoT)量化表示

PoT 量化虽然十分适配基于钟型的weights形式,但是,对于增加bit数是没有明显增益。比如,我们将位宽从 b b b设置为 b + 1 b+1 b+1 [ 0 , ± 2 − 2 b − 1 + 1 ] \left[0, \pm 2^{-2^{b-1}+1}\right] [0,±22b1+1]范围内的间隔(interval)不会发生变化,只是在 [ − 2 − 2 b − 1 + 1 , 2 − 2 b − 1 + 1 ] \left[-2^{-2^{b-1}+1}, 2^{-2^{b-1}+1}\right] [22b1+1,22b1+1]范围进一步缩小间隔。这个问题被定义为 rigid resolution(刚性分辨率)问题。为解决此问题,本文提出了APoT量化表示。

Q a ( α , k n ) = γ × { ∑ i = 0 n − 1 p i } where  p i ∈ { 0 , 1 2 i , 1 2 i + n , … , 1 2 i + ( 2 k − 1 ) n } \mathcal{Q}^{a}(\alpha, k n)=\gamma \times\left\{\sum_{i=0}^{n-1} p_{i}\right\} \text { where } p_{i} \in\left\{0, \frac{1}{2^{i}}, \frac{1}{2^{i+n}}, \ldots, \frac{1}{2^{i+\left(2^{k}-1\right) n}}\right\} Qa(α,kn)=γ×{i=0n1pi} where pi{0,2i1,2i+n1,,2i+(2k1)n1}

  • γ \gamma γ 是一个缩放系数,以确保 Q a \mathcal{Q}^{a} Qa 中的最大级别是 γ \gamma γ
  • k k k 称为基位宽,即每个加法项的位宽 n n n 是加法项的数量。
  • 当设置了位宽 b b b和基位宽 k k k时, n n n可由 n = b k n=\frac{b}{k} n=kb计算得到。
参数化Clipping函数 (RCF)

传统的STE仅仅对clip函数边界以外的阈值梯度值进行更新,对于边界以内的阈值参数梯度均为零,这不利于寻找最优的clip阈值边界。

∂ W ^ ∂ α ≈ ∂ ⌊ W , α ⌉ ∂ α = sign ⁡ ( W ) if  ∣ W ∣ > α else  0 \frac{\partial \hat{W}}{\partial \alpha} \approx \frac{\partial\lfloor W, \alpha\rceil}{\partial \alpha}=\operatorname{sign}(W) \text { if }|W|>\alpha \text { else } 0 αW^αW,α=sign(W) if W>α else 0

针对传统STE梯度约束不完整的问题,本文对权重内外的阈值边界梯度均进行梯度约束,以便于更快更好的训练得到最优阈值。

W ^ = α Π Q ( 1 , b ) ⌊ W α , 1 ⌉ \hat{\boldsymbol{W}}=\alpha \Pi_{\mathcal{Q}(1, b)}\left\lfloor\frac{\boldsymbol{W}}{\alpha}, 1\right\rceil W^=αΠQ(1,b)αW,1

∂ W ^ ∂ α = { sign ⁡ ( W ) if  ∣ W ∣ > α Π Q ( 1 , b ) W α − W α if  ∣ W ∣ ≤ α \frac{\partial \hat{\boldsymbol{W}}}{\partial \alpha}=\left\{\begin{array}{ll} \operatorname{sign}(\boldsymbol{W}) & \text { if }|\boldsymbol{W}|>\alpha \\ \Pi_{\mathcal{Q}(1, b)} \frac{\boldsymbol{W}}{\alpha}-\frac{\boldsymbol{W}}{\alpha} & \text { if }|\boldsymbol{W}| \leq \alpha \end{array}\right. αW^={sign(W)ΠQ(1,b)αWαW if W>α if Wα


class _pq(torch.autograd.Function):@staticmethoddef forward(ctx, input, alpha):input.div_(alpha)                          # weights are first divided by alphainput_c = input.clamp(min=-1, max=1)       # then clipped to [-1,1]sign = input_c.sign()input_abs = input_c.abs()if power:input_q = power_quant(input_abs, grids).mul(sign)  # project to Q^a(alpha, B)else:input_q = uniform_quant(input_abs, b).mul(sign)ctx.save_for_backward(input, input_q)input_q = input_q.mul(alpha)               # rescale to the original rangereturn input_q@staticmethoddef backward(ctx, grad_output):grad_input = grad_output.clone()             # grad for weights will not be clippedinput, input_q = ctx.saved_tensorsi = (input.abs()>1.).float()sign = input.sign()grad_alpha = (grad_output*(sign*i + (input_q-input)*(1-i))).sum()return grad_input, grad_alpha
权重归一化

权重归一化为裁剪(Clip)和投影(projection)提供了相对一致且稳定的输入分布,这便于在训练过程中更平滑地优化不同层和迭代。 此外,将权重的平均值设为零可以使得量化更加对称。权重归一化公式如下,主要是通过权重值减均值除方差完成,使得归一化后的权重分布满足均值为0方差为1。

W ~ = W − μ σ + ϵ , where  μ = 1 I ∑ i = 1 I W i , σ = 1 I ∑ i = 1 I ( W i − μ ) 2 \tilde{\boldsymbol{W}}=\frac{\boldsymbol{W}-\mu}{\sigma+\epsilon}, \text { where } \mu=\frac{1}{I} \sum_{i=1}^{I} \boldsymbol{W}_{i}, \sigma=\sqrt{\frac{1}{I} \sum_{i=1}^{I}\left(\boldsymbol{W}_{i}-\mu\right)^{2}} W~=σ+ϵWμ, where μ=I1i=1IWi,σ=I1i=1I(Wiμ)2

权重归一化使得训练参数更加一致

APoT量化伪代码

APoT量化伪代码

实验结果

CIFAR-10

CIFAR-10量化结果

ImageNet

ImageNet量化结果-表格

ImageNet量化结果-柱状图


更多内容关注微信公众号【AI异构】

这篇关于Additive Powers-of-Two (APoT) Quantization:硬件友好的非均匀量化方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282705

相关文章

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文